PURPOSES : This study develops a model that can estimate travel speed of each movement flow using deep-learning-based probe vehicles at urban intersections. METHODS : Current technologies cannot determine average travel speeds for all vehicles passing through a specific real-world area under obseravation. A virtual simulation environment was established to collect information on all vehicles. A model estimate turning speeds was developed by deep learning using probe vehicles sampled during information processing time. The speed estimation model was divided into straight and left-turn models, developed as fully-offset, non-offset, and integrated models. RESULTS : For fully-offset models, speed estimation for both straight and left-turn models achieved MAPE within 10%. For non-offset models, straight models using data drawn from four or more probe vehicles achieved a MAPE of less than 15%. The MAPE for left turns was approximately 20%. CONCLUSIONS : Using probe-vehicle data(PVD), a deep learning model was developed to estimate speeds each movement flow. This, confirmed the viability of real-time signal control information processing using a small number of probe vehicles.
This research propose a vehicle attitude estimation method using sensor fusion of speedometer and six-axis inertial sensor. External acceleration generated in a dynamic environment such as high-speed movement of a vehicle causes a considerable error in the attitude angle measured by the accelerometer. The external acceleration is estimated using velocity data obtained from speedometers mounted on most vehicles. The vehicle velocity is decomposed into three vector components using the angular velocity and attitude angle measured by the inertial sensor in the previous time step. The attitude angle estimated by the speedometer and the accelerometer is used to correct the error of the gyro sensor in the Kalman filter. In order to verify the performance of the proposed algorithm, experiments on a scenario of rapid acceleration/deceleration of a truck in a straight section and a scenario of high-speed driving on a long-distance highway are conducted.
센싱 기술의 발달로 다양한 종류의 매체를 이용한 우수한 차량 검지장비들이 개발되고 있는 요즘, 간단한 구조의 저가형 검지장비 또한 적은 예산으로 여러 곳에 설치할 수 있다는 장점 때문에 지속적인 연구가 이루어지고 있다. 본 연구에서는 저가형 차량 검지장비로서 센서를 사선으로 설치하여 좌우 및 전후 바퀴의 통과시간 간격과 차량의 윤거값을 적용하여 차량속도를 추정하는 방법을 제안하였다. 출고된 차량의 제원조사에서 얻어진 대표 윤거값을 축거와 뒤윤거의 비율에 따라 소형과 대형 차량으로 구분하여 적용하므로 기존의 연구보다 정확한 속도추정이 가능하도록 개선하였다. 특히, 소형과 대형차량을 구분하는 파라미터를 통하여 조사지점의 차종구성 비율을 고려한 정확도 보정이 가능하다. 간단하고 저가로 개발된 본 연구의 사선형 센서를 이용한 검지장비는 적은 비용으로 교통상황을 설명하는데 효율적으로 활용될 것으로 기대된다.
차량동역학제어시스템은 복잡하고 비선형이므로 잠금방지 제동시스템 및 자동주행시스템 개발에 어려움이 있다. 차량절대속도를 추정하기 위해 퍼지 로직 기법이 최근 적용되어 정상적인 조건에서 만족할 만한 결과를 얻고 있다. 그러나 급격한 제동시 추정오차가 크게 발생되었다. 본 논문에서는 휠 속도 센서를 이용하여 무인 컨테이너 운송차량의 절대속도를 추정하기 위해, 뉴럴 네트워크 모델의 방사대칭 기저함수와 주성분 분석법을 적용하여 10개의 추정 알고리즘중 오차를 4% 이내로 추정할 수 있는 알고리즘을 제시하였다.