검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 81

        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a graphite block is fabricated using artificial graphite processing byproduct and phenolic resin as raw materials. Mechanical and electrical property changes are confirmed due to the preforming method. After fabricating preforms at 50, 100, and 150 MPa, CIP molding at 150 MPa is followed by heat treatment to prepare a graphite block. 150UP-CIP shows a 12.9% reduction in porosity compared with the 150 MPa preform. As the porosity is decreased, the bulk density, flexural strength, and shore hardness are increased by 14.9%, 102.4%, and 13.7%, respectively; and the deviation of density and electrical resistivity are decreased by 51.9% and 34.1%, respectively. Therefore, as the preforming pressure increases, the porosity decreases, and the electrical and mechanical properties improve.
        4,000원
        3.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tin/graphite composites are prepared as anode materials for Li-ion batteries using a dry ball-milling process. The main experimental variables in this work are the ball milling time (0–8 h) and composition ratio (tin:graphite=5:95, 15:85, and 30:70 w/w) of graphite and tin powder. For comparison, a tin/graphite composite is prepared using wet ball milling. The morphology and structure of the different tin/graphite composites are investigated using X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and scanning and transmission electron microscopy. The electrochemical properties of the samples are also examined. The optimal dry ball milling time for the uniform mixing of graphite and tin is 6 h in a graphite-30wt.%Sn sample. The electrode prepared from the composite that is dry-ballmilled for 6 h exhibits the best cycle performance (discharge capacity after 50th cycle: 308 mAh/g and capacity retention: 46%). The discharge capacity after the 50th cycle is approximately 112 mAh/g, higher than that when the electrode is composed of only graphite (196 mAh/g after 50th cycle). This result indicates that it is possible to manufacture a tin/graphite composite anode material that can effectively buffer the volume change that occurs during cycling, even using a simple dry ball-milling process.
        4,000원
        4.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g−1 at a current density of 0.1 A g−1, a superior high-rate performance (104 F g−1 at a current density of 20.0 A g−1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g−1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.
        4,000원
        5.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bulk graphite is manufactured using graphite scrap as the filler and phenolic resin as the binder. Graphite scrap, which is the by-product of processing the final graphite product, is pulverized and sieved by particle size. The relationship between the density and porosity is analyzed by measuring the mechanical properties of bulk graphite. The filler materials are sieved into mean particle sizes of 10.62, 23.38, 54.09, 84.29, and 126.64 μm. The bulk graphite density using the filler powder with a particle size of 54.09 μm is 1.38 g/cm3, which is the highest value in this study. The compressive strength tends to increase as the bulk graphite density increases. The highest compressive strength of 43.14 MPa is achieved with the 54.09 μm powder. The highest flexural strength of 23.08 MPa is achieved using the 10.62 μm powder, having the smallest average particle size. The compressive strength is affected by the density of bulk graphite, and the flexural strength is affected by the filler particle size of bulk graphite.
        4,000원
        6.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The change in the open porosity of bulk graphite as a function of the uniaxial molding pressure during manufacturing is studied using artificial graphite powder. Subsequently, the graphite is impregnated to determine the effect of the open porosity on the impregnation efficiency and to improve the density of the final bulk graphite. Bulk graphite is manufactured with different uniaxial molding pressures after mixing graphite powder, which is the by-product of processing the final graphite products and phenolic resin. The bulk density and open porosity are measured using the Archimedes method. The bulk density and open porosity of bulk graphite increase as the molding pressure increases. The open porosity of molded bulk graphite is 25.35% at 30 MPa and 29.84% at 300 MPa. It is confirmed that the impregnation efficiency increases when the impregnation process is performed on a specimen with large open porosity. In this study, the bulk density of bulk graphite molded at 300 MPa is 11.06% higher than that before impregnation, which is the highest reported increase. Therefore, it is expected that the higher the uniaxial pressure, the higher the density of bulk graphite.
        4,000원
        7.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the manufacturing of bulk graphite, pores produced by vaporization and discharge of volatile materials in binders during carbonization reduce the density of bulk graphite, which adversely affects the electrical conductivity, strength and mechanical properties. Therefore, an impregnation process is introduced to fill the pores and increase the density of bulk graphite. In this study, bulk graphite is prepared by varying the viscosity of the impregnant. The microstructure of bulk graphite is observed. The flexural strength and electrical resistivity are measured. As the viscosity of the impregnants decreases and the number of impregnations increases, it is shown that the number of pores decreases. The density before impregnation is 1.62 g/cm3. The density increases to 1.67 g/cm3 and porosity decreases by 18.6 % after three impregnations using 5.1 cP impregnant, resulting in the best pore-filling effect. After three times of impregnation with a viscosity of 5.1 cP, the flexural strength increases by 55.2 % and the electrical resistivity decreases by 86.76 %. This shows that a slight increase in density due to the pore-filling effect improves the properties of bulk graphite.
        4,000원
        8.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Pores produced by carbonization in bulk graphite process degrade the mechanical and electrical properties of bulk graphite. Therefore, the pores of bulk graphite must be reduced and an impregnation process needs to be performed for this reason. In this study, bulk graphite is impregnated by varying the viscosity of the impregnant. The pore volume and pore size distribution, according to the viscosity of the impregnant, are analyzed using a porosimeter. The total pore volume of bulk graphite is analyzed from the cumulative amount of mercury penetrated. The volume for a specific pore size is interpreted as the amount of mercury penetrating into that pore size. This decreases the cumulative amount of mercury penetrating into the recarbonized bulk graphite after impregnation because the viscosity of the impregnant is lower. The cumulative amount of mercury penetrating into bulk graphite before impregnation and after three times of impregnation with 5.1cP are 0.144 mL/g and 0.125 mL/gm, respectively. Therefore, it is confirmed that the impregnant filled the pores of the bulk graphite well. In this study, the impregnant with 5.1 cP, which is the lowest viscosity, shows the best effect for reducing the total pore volume. In addition, it is confirmed by Raman analysis that the impregnant is filled inside the pores. It is confirmed that phenolic resin, the impregnant, exists inside the pores through micro-Raman analysis from the inside of the pore to the outside.
        4,000원
        9.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zinc-ion Batteris (ZIBs) are recently being considered as energy storage devices due to their high specific capacity and high safety, and the abundance of zinc sources. Especially, ZIBs can overcome the drawbacks of conventional lithium ion batteris (LIBs), such as cost and safety issues. However, in spite of their advantages, the cathode materials under development are required to improve performance of ZIBs, because the capacity and cycling stability of ZIBs are mainly influenced by the cathode materials. To design optimized cathode materials for high performance ZIBs, a novel manganese oxide (MnO2) coated graphite sheet is suggested herein with improved zinc-ion diffusion capability thanks to the uniformly decorated MnO2 on the graphite sheet surface. Especially, to optimize MnO2 on the graphite sheet surface, amounts of percursors are regulated. The optimized MnO2 coated graphite sheet shows a superior zinc-ion diffusion ability and good electrochemical performance, including high specific capacity of 330.8 mAh g−1 at current density of 0.1 A g−1, high-rate performance with 109.4 mAh g−1 at a current density of 2.0 A g−1, and remarkable cycling stability (82.2 % after 200 cycles at a current density of 1.0 A g−1). The excellent electrochemical performance is due to the uniformly decorated MnO2 on the graphite sheet surface, which leads to excellent zinc-ion diffusion ability. Thus, our study can provide a promising strategy for high performance next-generation ZIBs in the near future.
        4,000원
        10.
        2020.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        신축성 전극을 다양한 소재와과 방식을 통해 제조되고 있으며 많은 기계적 특성 분석이 연구되고 있다. 은, 구리, 금, 나노와이어 등 다양한 금속이나 CNT, graphene, 플러렌 등을 기반으로 연구되고 있으며 대부분 높은 전도성과 신축특성을 요구하는 어플리케이션에 사용되지만 고가라는 단점이 있다. 본 연구에서는 저비용 소재와 공정으로 높은 신축특성과 반복 특성을 보유한 신축성 전극을 개발하였다. 값싼 전도성 탄소 와 흑연을 혼합하여 페이스트를 개발하였고 개발된 페이스트를 메탈마스크 인쇄 공정을 통해 TPU기판 위에 인쇄하였고 120℃에서 2시간 경화를 진행하였다. 이렇게 개발된 전극을 인장 시험과 인장 반복 시험을 통해 특성을 증명하였고 향후 어플리케이션 적용 가능여부를 확인하기 위해 무릎에 임시로 고정 후 간이 시험을 진행한 결과 20회 반복하는 동안 일정한 저항 변화를 보여줬다.
        4,000원
        11.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Conductive polymer composites with high electrical and mechanical properties are in demand for bipolar plates of phosphoric acid fuel cells (PAFC). In this study, composites based on natural graphite/fluorinated ethylene propylene (FEP) and different ratios of carbon black are mixed and hot formed into bars. The overall content of natural graphite is replaced by carbon black (0.2 wt% to 3.0 wt%). It is found that the addition of carbon black reduces electrical resistivity and density. The density of composite materials added with carbon black 3.0 wt% is 2.168 g/cm3, which is 0.017 g/cm3 less than that of non-additive composites. In-plane electrical resistivity is 7.68 μΩm and through-plane electrical resistivity is 27.66 μΩm. Compared with non-additive composites, in-plane electrical resistivity decreases by 95.7 % and through-plane decreases by 95.9 %. Also, the bending strength is about 30 % improved when carbon black is added at 2.0 wt% compared to non-additive cases. The decrease of electrical resistivity of composites is estimated to stem from the carbon black, which is a conductive material located between melted FEP and acts a path for electrons; the increasing mechanical properties are estimated to result from carbon black filling up pores in the composites.
        4,200원
        12.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        흑연 동위원소 비율법(GIRM)은 비핵화 검증 도구로써 흑연감속로의 플루토늄 생산량을 예측하는데 사용된다. 원자로가 가동되면 238U의 중성자 포획 반응에 의해 플루토늄이 생성되어 축적되고 동시에 흑연 내 불순물도 핵반응을 통해 다른 핵종 으로 바뀌기 때문에 플루토늄의 생성량과 불순물의 농도는 일정한 상관 관계를 갖는다. 이러한 상관관계에도 불구하고 어느 특정 시점에서의 불순물의 농도는 불순물의 초기 농도에 의존하기 때문에 불순물의 초기 농도가 알려지지 않으면 불순물의 절대 농도만으로 플루토늄 생산량을 예측하는 것은 불가능하다. 그러나 불순물의 초기 동위원소 비율은 초기 불순물 농 도에 상관없이 알려져 있기 때문에 불순물의 동위원소 비율과 플루토늄 생산량의 관계는 흑연감속로에서 플루토늄 생성량을 예측하는 유용한 도구가 될 수 있다. 흑연동위원소 비율법의 지표 원소로 Boron, Lithium, Chlorine, Titanium, Uranium 등이 이용되는 것으로 알려져 있다. 위 지표원소의 동위원소 비와 플루토늄 생성량 사이의 상관 관계가 초기 불순물 농도에 의존하지 않는지를 네 가지 다른 흑연 불순물 조성을 이용하여 평가하였다. 10B/11B, 36Cl/35Cl, 48Ti/49Ti, 235U/238U은 흑연의 초기 불순물 농도에 상관없이 누적 플루토늄 생성량과 일관된 상관 관계를 갖는다. 이러한 원소들은 다른 원소의 핵반응에 의해 해당 원소의 동위원소가 생성되지 않기 때문이다. 반면 6Li/7Li과 플루토늄 생성량의 상관관계는 흑연 내 불순물의 초기 농도에 의존한다. 7Li은 6Li의 중성자 포획 반응에 의해서 생성되기도 하지만 10B의 (n, α)반응으로도 생성되는 것이 더 지배 적이기 때문에 10B의 초기 농도가 7Li의 생성량에 영향을 미치는 것이다. 따라서 Lithium은 흑연 동위원소 비율법을 위한 지표 원소로 적절하지 않음을 알 수 있다.
        4,000원
        13.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m−1K−1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10−6 to 3.06 × 10−6 K−1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.
        4,000원
        15.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous graphites were synthesized by removing the template in HF after cabothermal conversion for 3 h at 900 ℃, accompanied by intercalations of pyrolyzed fuel oil (PFO) in the interlayer of Co or Ni loaded magadiite. The X-ray powder diffraction pattern of the porous graphites exhibited 00l reflections corresponding to a basal spacing of 0.7 nm. The particle morphology of the porous graphites was composed of carbon plates intergrown to form spherical nodules resembling rosettes like a magadiite template. TEM shows that the cross section of the porous graphites is composed of layers with very regular spaces. In particular, crystallization of the porous graphite was dependent on the content of Co or Ni loaded in the interlayer. The porous graphite had a surface area of 328-477 m2/g. This indicates that metals such as Co and Ni act as catalysts that accelerate graphite formation.
        4,000원
        16.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A composite material was prepared for the bipolar plates of phosphoric acid fuel cells(PAFC) by hot pressing a flake type natural graphite powder as a filler material and a fluorine resin as a binder. Average particle sizes of the powders were 610.3, 401.6, 99.5, and 37.7 μm. The density of the composite increased from 2.25 to 2.72 g/cm3 as the graphite size increased from 37.7 to 610.3 μm. The anisotropy ratio of the composite increased from 1.8 to 490.9 as the graphite size increased. The flexural strength of the composite decreased from 15.60 to 8.94MPa as the graphite size increased. The porosity and the resistivity of the composite showed the same tendencies, and decreased as the graphite size increased. The lowest resistivity and porosity of the composite were 1.99 × 10−3 Ωcm and 2.02 %, respectively, when the graphite size was 401.6 μm. The flexural strength of the composite was 10.3MPa when the graphite size was 401.6 μm. The lowest resistance to electron mobility was well correlated with the composite with lowest porosity. It was possible the flaky large graphite particles survive after the hot pressing process.
        4,000원
        18.
        2017.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Natural and expandable graphites were chemically treated in acidic aqueous solutions such as acetic acid or mixtures of acetic acid and nitric acid. Structures and thermal conductivities of the as-treated graphites were characterized in detail. Both graphites were significantly oxidized in the mixed acidic solution of H2SO4 and HNO3, which condition was generally used for the oxidation of carbon nanotubes. This considerable oxidation of graphites caused a depression of their thermal conductivity. The structural characteristics, obtained by XRD and XPS, show that the graphites treated in the relatively weak acidic conditions (acetic acid or mixture of acetic acid and nitric acid) were quite similar to the untreated graphites. However, the thermal conductivities of both acidic-treated graphites were remarkably increased.
        4,000원
        19.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
        4,000원
        20.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
        4,000원
        1 2 3 4 5