검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 196

        41.
        2016.11 서비스 종료(열람 제한)
        하수슬러지 및 음식물류폐기물과 같은 유기성폐기물이 해양투기가 전면 금지되면서 육상처리 및 재활용처리가 관심이 되고 있다. 하수슬러지와 음식물류폐기물을 육상처리할 뿐만 아니라 신재생에너지를 생산할 수 있는 바이오가스화가 그 처리에 좋은 대안으로 부각되고 있다. 최근 하수슬러지 혐기소화시설에서 음식물류폐기물을 병합처리 하는 경향이 늘고 있다. 그러나 운전중인 하수슬러지 바이오가스화 시설은 그 유기물분해율과 메탄생성율 측면에서 그 효율이 매우 저조하며, 음식물류폐기물 바이오가스화 시설은 효율은 많이 증가하였으나 아직까지는 그 안정적 운전이 미비한 실정이다. 본 연구에서는 최근 하수슬러지와 음식물류폐기물을 병합처리하는 추이에 맞춰 효율성과 안정적 운전에서 문제점을 조사하고 이를 해결할 수 있는 고려인자들을 도출하여 그 가이드라인을 제시하는 것을 목적으로 하고 있다. 이를 위하여 하수슬러지만 혐기소화하는 5개 시설과 하수슬러지 혐기소화시 음식물류폐기물을 병합처리하는 9개 시설을 대상으로 현장조사를 실시하였다. 현장조사의 목적은 병합처리 바이오가스화 시설의 문제점들을 조사하고 그 문제점을 해결하기 위한 고려인자들을 도출하는 것이다. 또한 계절별로 하수슬러지 바이오가스화 시설 4개와 병합처리시설 7개에 대하여 정밀모니터링을 실시하였다. 이 정밀모니터링을 통하여 현장조사에서 도출된 고려인자에 대한 구체적인 가이드라인들을 제시하고자 한다. 가이드라인 제시는 전처리 등 6가지 공정별로 하수슬러지와 음식물류폐기물 물성들을 고려하여 제시하였다.
        42.
        2016.11 서비스 종료(열람 제한)
        매립지에서 발생하는 매립가스는 악취를 발생시켜 주변지역 대기환경을 저해하고 있다. 매립가스의 주성분은 온실가스인 이산화탄소(CO2)와 메탄가스(CH4)로 구성되어 있어, 바이오에너지와 같은 대체에너지 생산 기술 등의 연구에 활용되고 있다. 본 연구에서는 가스화 공정에서 발생하는 RDF char를 이용하여 CO2/CH4 개질 반응을 통해 생성되는 합성가스의 주성분인 CO, H2의 생성 특성에 대해 연구하였다. 1023∼1173K의 온도에서 CH4/CO2 ratio는 1.3으로 고정하여 혼합된 CO2와 CH4를 RDF char와 반응시켜 생성되는 H2와 CO의 변화를 측정하였다. 실험 결과에는 반응 온도가 1123K일 때 SUS bed의 CO2 전환율은 3.2%로 나타났으며, 반면 RDF char에서의 CO2 전환율은 81.7%로 나타났다. 이러한 실험결과로 RDF char는 CO2 개질반응에 촉매 역할을 하는 것으로 판단된다. 반응 후 RDF char 성분 분석 결과에 따라 함량이 높은 CaO는 반응전과 후 비슷한 결과를 나타났고 CO2 전환에 영향을 주지 않아 촉매 역할을 하는 Fe2O3나 TiO2에 의한 것으로 판단된다. 산소가 없는 경우에 RDF char에 의한 CO2와 CH4 개질 반응은 온도 증가에 따라 CO2 전환율은 45.3%(1023K)에서 83.16%(1173K)로 증가하였고 CH4 전환율은 10.2%(1023K)에서 27.0%(1173K)로 증가하였다. 또한 산소가 있는 경우는 산소 없는 경우보다 CH4 전환율은 1173K에서 27.0%에서 41.1%로 증가하고 발생가스의 H2 비율은 15.8%에서 22.3%로 증가한 것으로 나타났다. 이는 RDF char에 의해 메탄과 이산화탄소 개질 반응에 Reforming reaction과 Reverse WG shift reaction, Boudouard reaction, Reverse WG shift reaction에 의한 영향을 받는 것으로 판단된다.
        43.
        2016.11 서비스 종료(열람 제한)
        지속적인 화석 연료의 사용으로 인해 발생하는 환경오염 때문에 대체에너지를 찾는데 많은 연구가 진행되고 있다. 국내에서 발생되는 폐기물은 가연분 함량이 높아 폐기물 고형연료로 생산할 경우 화석원료의 대체제로 사용 가능성이 크다. 이러한 SRF는 최근 주목 받기 시작한 기술로 폐기물을 선별・파쇄 및 건조를 거쳐 생산되며, 국내 SRF의 발열량 기준은 약 3,500kcal/kg 으로 화석연료 및 바이오매스와 비교했을 때 연료로 사용하는데 문제가 없을 정도의 품질기준을 만족시키고 있다. 하지만 SRF의 생산 효율이 60%이하로 낮은 실정에 있어, 연료로 사용가능한 폐기물들이 버려지고 있다. 따라서 본 연구에서는 이를 극복하기 위한 방안으로 SRF를 생산하고 남은 잔재물(저품위 폐기물)을 다시 고형연료로 생산하여 열처리 시설에서 에너지 회수 시설에 적용하기 위한 실험의 하나로 저품위 폐기물의 기초특성분과 본 폐기물의 연소특성에 대해서 평가하였다. 실험결과 비록 MBT(Mechanical Biological Treatment) 처리를 거친 저품위 폐기물을 사용했지만 기존 SRF 연소특성과 비교했을 때 좋은 연소특성을 보였으며, 대기배출허용기준 또한 만족하였다. 본 연구에서는 SRF를 이용하여 에너지화 기술 중 하나인 가스화기술을 적용해 실험을 진행하였다. 실험조건으로는 고정층 반응기에서 공기 산화제를 사용하였으며 반응온도와 시료투입량을 900℃와 1g/min으로 고정하였다. 최적 ER(Equivalent ratio)을 찾기 위하여 0.2,0.4,0.6으로 변화를 주었다. 또한, 가스특성을 평가하기 위하여 Micro-GC를 통해 합성가스의 조성을 파악하였으며, 건조가스수율, 냉가스 효율, 탄소 전환율을 가스화특성 평가 인자로 사용하였다.
        44.
        2016.11 서비스 종료(열람 제한)
        일반적으로 저급의 화석연료나 폐기물로부터 thermochemical conversion을 통해서 고급의 에너지를 얻는 전환기술은 열분해, 가스화, 액화, 연소 등을 들 수 있는데 이들 전환기술들은 반응 온도, 압력, 그리고 공급된 반응물 종류 및 유무에 따라 서로 다른 1차 생성물을 얻을 수 있으며 이들 1차 생성물들은 다시 사용 목적에 따라 여러 단계의 변환 공정을 통하여 최종적으로 유용한 생성물을 만들게 된다. 특히 폐기물을 대상으로 하는 가스화 공정은 환경문제와 에너지 효율을 동시에 접근할 수 있는 공정으로 각광을 받고 있다. 가연성 폐기물로부터 일산화탄소와 수소가 주성분인 합성 가스를 얻기 위한 주된 반응은 환원 반응이다. 이반응은 흡열반응으로 연이어서 발생하는 연소반응에서 생성된 열을 이용한다. 연소반응으로 생성된 CO2와 H2O를 환원시켜 결과적으로 CO와 H2를 생성한다. CO2 + H2O → CO + H2 본 연구에서는 이러한 가스화 반응으로 얻어진 합성가스를 기존의 LNG 연소로에 적용할 때 내부 온도 및 유동의 변화를 해석하여 향후 가스화 공정으로부터 얻어진 합성가스의 산업 현장에의 적용가능성을 평가해 보고자 한다. 합성가스는 기체상 연료이므로 발열량의 차이는 존재하지만 기존의 LNG를 연료로 사용하고 있는 산업용 연소로에 버너의 큰 교체 없이 사용이 가능할 것으로 판단되며 내부 열유동에 큰 변화가 생기지 않는다면 가스화 장치로부터 얻어진 합성가스의 판로 개척에 일조를 할 것으로 판단된다. 본 연구에서는 LNG를 연료로 사용하는 연소로를 대상으로 LNG의 70%를 합성가스 연료로 대체했을 때 연소로의 내부 열유동 해석 및 합성가스의 주입노즐 배치 및 주입 방법 등을 변화시켜 다양한 변수 연구를 수행하여 의미있는 결과를 도출하였다. 연구 결과 발열량 차이에 따라 주입량이 증가되므로 그 점을 감안하여 적절한 방법으로 주입하면 연소로 내부 열유동 분포의 큰 변화 없이 연료대체가 가능한 것으로 나타났다.
        45.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        The utilization of renewable energy will be an inevitable situation in the future because of the acceleration of climate change and depletion of fossil fuels. Waste and biomass are major sources of renewable energy. In the near future, biomass will become the main resource of renewable energy in the world. However, in case of Korea, obtaining a stable supply of biomass is difficult. To overcome this problem, we need to import biomass from other countries. Palm empty fruit bunch (EFB) is known to be a good biomass resource, which is treated by either landfill or incineration in Indonesia and Malaysia. EFB could be used as feedstock for gasification for energy recovery as a gas fuel. Generally, biomass gasification has more stable operation than waste gasification. Nevertheless, biomass gasification generates lots of tar in syngas because of the lignin content in biomass, which may cause problems for gas engines and other processes. In this study, gasification experiments as well as qualitative analysis were conducted for determining syngas characteristics with tar content. Tar sampling and analysis were performed under various conditions by changing the flow rate, sampling time, and sampling gas flow. Measuring the tar content in syngas during the gasification process was also proposed
        46.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        This paper assesses the feasibility of producing fuel energy from sewage sludge via four processes: microwave-induced pyrolysis/gasification and conventional pyrolysis/gasification. Both pyrolysis and gasification produced gas, char, and tar. The gas produced for the gasification contained mainly hydrogen and carbon monoxide with a small amount of methane and hydrocarbons (C2H4, C2H6, C3H8). However, the gasification produced higher carbon monoxide instead of the hydrogen. The microwave gasification generated higher heavy tar compared to other processes. As a light tar, benzene generated higher value for both the pyrolysis and gasification. The sludge char showed a vitreous-like texture for the microwave process and a deep crack shape for the conventional heating process. These results indicate that the gas produced from the microwave processes of wet sewage sludge might be usable as a fuel energy source, but this would require removal of the condensable PAH tars. The sludge char produced could also be used as a solid fuel or adsorbent.
        47.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        This paper was conducted experimental work to energy recovery and syngas production using a pilot scale fixed bed gasification process of solid waste. The temperature of gasifier bottom section was the highest at about 522 ~ 808oC. The syngas composition was contained CO 10.0 ~ 11.4%, H2 8.4 ~ 11.3%, CH4 3.7 ~ 3.9%, CnHm 3.3 ~ 4.3% with lower heating value 1,500 kcal/Nm3. About 68.8% of the waste and the air energy is converted to syngas. Approximately 8.4% is lost in heat of heat exchanger and cleaning process and about 0.8% of the heat energy is recycled into the gasifier in the form of preheated air. The electric power output rate was found to range 10.5 to 12.5 kW.
        48.
        2015.11 서비스 종료(열람 제한)
        폐기물 가스화는 폐기물 내에 포함되어있는 C, H 성분을 CO, H2가 주성분인 합성가스로 전환하는 기술이다. 가스화로부터 생산된 합성가스는 수성가스전이반응 (Water Gas Shift, CO + H2O → CO2 + H2, ΔH = -41.1 kJ mol-1) 공정을 통해 고순도 수소로 전환이 가능하다. 최근 연구 결과 보고에서 바이메탈 형태의 Ni-Cu-CeO2 촉매는 고온 수성가스전이반응에 매우 높은 활성과 선택도를 보였다. 본 연구에서는 Ni-Cu-CeO2 촉매의 제조방법 최적화를 위해 Ni-Cu-CeO2 촉매를 함침법, 공침법, 졸-겔법, 수열합성법으로 제조하고 활성을 비교 평가 하였다. 다양한 제조방법 중 졸-겔법으로 제조한 Ni-Cu-CeO2 촉매가 가장 높은 CO 전환율을 나타내었다. 이는 졸-겔법으로 제조한 촉매의 높은 표면적과 활성물질-담체간 강한 상호작용에 기인한 결과이다.
        49.
        2015.11 서비스 종료(열람 제한)
        장래 화석연료의 고갈 및 지구온난화에 대비한 대체에너지의 개발・보급이 시급함에 따라, 이제 폐기물은 새로운 자원으로 인식되고 활용하는 단계에 이르렀다. 우리나라는 세계 10위의 에너지 소비국으로써 97%를 수입에 의존하고 있는 실정이다. 국내 폐기물 관리는 매립, 소각 등의 처리방식에서 폐기물을 자원화 할 수 있는 자원순환형 폐기물 관리로 변화되고 있으며, 이러한 상황에서 생활폐기물의 다양한 처리기술을 통해 고부가가치의 에너지로 활용이 가능하며, 이 중 폐기물 가스화 기술은 열적처리 기술 중 진보적인 기술이다. 본 연구에서는 전처리된 생활폐기물을 고정층 pilot 공기가스화 시스템에서 가스화하여 합성가스를 생산하였으며, 고부가가치 에너지로 활용하기 위해 습식정제 장치를 구축하여 실험을 진행하였으며, 실험에서 발생된 정제폐수를 채취하여 폐기물관리법과 수질 및 수생태계 관련 법률에서 명시하는 40종의 항목에 대한 분석을 진행하였다. 분석결과 배출 허용 기준에 근접하거나 초과되는 주요 분석 항목은 수소이온농도, 부유물질, COD, BOD, 노말핵산 추출물질, 페놀류, 시안, 총질소, 벤젠, 생태독성(TU), DEHP(디에틸헥실프탈레이트), 아크로니트릴이 있으며 이에 대한 화학적·생물학적 처리 방법의 검토가 필요할 것으로 예상된다.
        50.
        2015.11 서비스 종료(열람 제한)
        고정층 반응기에 산소를 산화제로 공급하는 고온 영역의 가스화 반응은 공기를 이용하는 가스화와는 달리 합성가스 중 질소가 존재하지 않기 때문에 70% 이상의 고농도 합성가스를 생산할 수 있다. 본 연구에서는 해외에서의 순산소 가스화 시스템의 운전 사례에서 합성가스의 조성과 가스상, 입자상 오염물질의 배출량을 확인하여 국내에서의 적용 가능성을 검토하였다. 독일의 THERMOSELECT社에서 이탈리아의 폰도토체(Fondotoce)에 설치한 100 톤/일급 가스화시스템의 사례를 검토하였으며 국내에서의 배출허용 기준과 비교하였다. 가스화 시스템에서 생산되는 합성가스의 조성과 가스상, 입자상 오염물질 뿐만 아니라 폐수, 슬래그, 비산재의 분석결과에 대한 분석을 수행하였다.
        51.
        2015.11 서비스 종료(열람 제한)
        3 kg/hr급 소용량 down draft 방식의 고정층 가스화기에서의 산화제 공급방식에 따른 비성형 고형연료(SRF, Solid Refuse Fuel)의 공기가스화 특성을 파악하였다. 공기단독, 공기와 스팀 혼합 및 산소부화 세 조건에서의 산화제 종류에 따른 가스화 특성과 공기를 산화제로 하여 산화제 주입 위치에 따른 가스화 특성을 살펴보았다. 가스화 특성을 살펴보기 위한 지표로 합성가스 조성, 합성가스 발열량, 냉가스효율 및 탄소전환율을 산정하여 사용하였다. 산소부하 가스화의 경우 주입되는 산소량은 동일하고 상대적으로 질소량이 감소하기 때문에 합성가스에 포함된 질소함량의 감소로 합성가스 발열량은 증가하게 된다. 그리고 스팀을 혼합하여 사용할 경우 주입된 스팀과 탄화수소 가스의 수증기 개질반응(CnHm + H2O → H2 + CO)에 의해서 H2와 CO농도가 증가하고 합성가스 발열량도 증가하게 된다. 또한 탄화수소 계열인 타르와 반응함으로써 타르 제거 효과를 가지는 것으로 보고된다. 또한 보조산화제를 적절하게 사용할 경우 합성가스 품질을 유지한 상태에서 로내 타르 제거효과가 있는 것으로 보고된다. 공기가스화와 비교하여 산소부화 조건의 경우 합성가스 발열량은 증가되었지만 냉가스효율 및 탄소전환율은 감소된 결과를 보였다. 보조산화제를 사용한 경우 합성가스 유량과 H2, CH4, CO를 포함하는 가연성가스의 농도가 증가하였고 이로 인해 냉가스효율과 탄소전환율도 증가하는 결과를 보였다.
        52.
        2015.11 서비스 종료(열람 제한)
        폐기물을 이용한 가스화 공정을 통해 생성되는 합성가스는 적용하고자 하는 후단공정에 따라 적합한 품질을 얻기 위해 다양한 정제 설비를 거쳐 정제된다. 가스터빈을 가스화 시스템 후단 공정으로 적용할 경우 터빈의 블레이드가 마모되지 않기 위해서 합성가스 내 입자상 물질의 입자사이즈는 5 μm 이하까지 제거되어야 한다. 따라서 합성가스 내 입자상 물질들을 제어하기 위해서는 각 정제 설비에서 발생하는 입자상물질 또는 정제설비에서 제거된 입자상물질들의 입자 사이즈에 대한 분석이 필요하다. 본 연구에서는 pilot scale의 폐기물 가스화 시스템 내의 세정 설비에서 발생하는 폐수 내 존재하는 입자상물질의 입자사이즈를 비교함으로써 각 세정설비의 특징을 파악하고, 더 나아가 각 설비에서 제거된 입자상물질의 입도 거동을 통해 상용규모 단계까지 scale-up 하였을 때 세정설비에 대한 성능을 예측할 수 있다. 가스화공정에서 발생한 합성가스 내 입자상 물질은 분진제거탑, 중화세정탑 그리고 습식전기집진기를 통과하여 대부분의 입도가 큰 물질은 제거되었다. 입도분석 결과 가스화로에서 발생한 입자상 물질의 입자사이즈는 24.0 μm 이며, 분진세정탑에서는 23.0 μm, 중화세정탑은 14.2 μm 그리고 습식전기집진기에서는 12.8 μm의 입자상 물질을 제거하는 것으로 분석되었다. 이러한 분석 결과를 바탕으로 pilot 규모의 폐기물 가스화 시스템에서 생성된 합성가스는 사이즈가 큰 입자상 오염물질이 대부분 제거되어 가스터빈이나, IC engine에 후단공정으로 활용이 가능함을 확인할 수 있다.
        53.
        2015.11 서비스 종료(열람 제한)
        폐기물, 바이오매스를 원료물질로 하여 전기를 생산하는 시스템은 화석연료를 대체하고, CO2 배출을 저감시킬 수 있는 기슬로 평가되고 있어, 기술의 적용에 대한 관심이 매우 집중되고 있다. 아직도 인도를 포함한 남부아시아 지역 국가에서 거주하는 인구의 40% 이상의 사람들에게는 전기 사용 접근이 제한되거나 매우 어려운 것으로 알려져 있다. 따라서 폐기물, 바이오매스 가스화를 기반으로 하는 전기 생산 시스템은 이러한 국가의 지역사회에 전기를 공급할 수 있는 적절한 대안이 될 수 있는 것으로 평가되고 있다. 본 연구에서는 Pilot 규모에서 폐기물을 이용한 공기 가스화를 통해 생산된 합성가스를 연료로 이용하여 가스엔진과의 연계를 통해 전기를 생산하는 시스템을 개발하였다. 가스화기 상부에서 폐기물을 투입하고 산화제인 공기는 가스화기 측면에서 투입하였으며, 반응된 가스는 하부로 배출되는 하향식 고정층 방식의 장치를 이용하여 가스화에 의한 합성가스 생산하고 이를 가스엔진의 연료로 사용하였다. 합성가스 엔진은 주파수 60Hz, 회전수 1,200rpm, 최대출력 20kW급의 사양을 가진 것을 이용하였다. 가스엔진 운전 초기에는 원료 합성가스의 일부만을 유입하여 가동을 실시하였고, 안정하게 유지시 전량을 유입하여 가스엔진을 가동하였다. 합성가스의 조성은 CO 9.8 ~ 15.2%, H2 6.8 ~ 10.9%, CH4 3.4 ~ 4.7%으로 나타났으며, 30.2 ~ 34.6 Nm³/h의 합성가스를 유입하여 약 13.1 ~ 16.4 kW의 전기를 생산할 수 있었다.
        54.
        2015.11 서비스 종료(열람 제한)
        국내 중・소규모 지자체의 중・소규모 생활폐기물 소각시설은 에너지 이용을 할 수 없거나, 에너지 회수율이 낮게 활용되고 있다. 중・소규모 생활폐기물 소각시설의 폐열보일러에서는 품질이 낮은 스팀을 생산하므로 스팀터빈을 적용한 경우에는 발전효율이 매우 낮으며, 대부분 생산 스팀을 활용할 시설이 없는 실정이다. 이러한 미활용 되고 있는 중・소규모 지자체에 적합한 고효율발전이 가능하고 열풍 또는 온수 이용이 가능한 폐기물 가스화 발전시설을 보급 가능성을 검증하기 위해 생활폐기물이 1일 50톤 정도 발생하는 지자체에 공기사용 생활폐기물 가스화 가스엔진발전플랜트를 구축하여 성능검증을 수행하고 있다. 본 연구에서는 30톤/일급 상용규모 고정층 공기사용 가스화로에서 생산된 합성가스를 가스엔진 발전시스템에 의해 전력생산량과 50톤/일급 가스화용 생활폐기물 전처리시설 및 가스화발전 시설의 소내 사용전력을 고찰하였다. 반입기준의 생활폐기물 50톤/일급 전처리 및 30톤/일급 가스화 발전 시설의 판매 가능한 전력량을 운전결과를 통해 고찰하였다. 공기사용 고정층 가스화 Pilot 시스템을 이용한 연구에서는 가스엔진 발전이 가능한 합성가스 생산을 위해서는 폐기물의 저위발열량을 3,500 kcal/kg이상으로 전처리 해야 하는 설계조건으로 도출되었다. 본 연구에서 사용한 50톤/일급 전처리시설을 이용하여 파쇄, 선별 및 탈수를 진행하였고, 건조는 진행하지 않은 전처리된 생활폐기물을 공기사용 가스화를 통행 생산된 합성가스를 이용하여 가스엔진 발전시스템에서 생산한 전력량은 약 800 kWe 이상 생산 가능함을 확인하였다. 또한 전체 소내전력 사용량은 약 250 kWe으로 전력판매량은 약 550 kWe로 도출되었다. 폐기물 가스화 발전의 경우 가중치가 1.0이므로 3,960 REC/yr 확보가 가능한 것으로 산출되었다.
        55.
        2015.11 서비스 종료(열람 제한)
        국내 RDF(Refuse Derived Fuel)와 관련한 ‘자원의 절약과 재활용 촉진에 관한 법률이 2013년 1월 개정되면서 국내에서는 RDF가 SRF로 종류가 변경되었으며, 이와 더불어 종전 RPF(Refuse Plastic Fuel), RDF, TDF(Tire Derived Fuel), WCF(Wood Chip Fuel)로 구분되던 것이 SRF와 BIO-SRF로 개정되었으며, 고형연료 제품에서도 성형과 비성형제품으로 구분되게 되었다. 이에 따라 기존 성형SRF제품들에 비해서 비성형 SRF제품의 수분함량의 기준이 15%차이가 나게 되었다. 본 연구에서는 생활폐기물로 생산되는 비성형 SRF의 가스화 반응을 활용하여 고부가 가치의 연료 및 원료를 생산하기 위한 고정층 및 유동층에서의 가스화 특성을 파악하고자 한다. 실험조건은 운전온도 900℃, ER(Equivalent Ratio)조건 0.2, 0.4, 0.6에서의 가스화 반응을 실시하였으며, 고정층반응기에서는 ER비가 증가함에 따라 수소비율이 감소하는 것으로 나타났으나, 유동층반응기에서는 ER 0.4일 때 수소비율이 최저로 나타났다.
        56.
        2015.11 서비스 종료(열람 제한)
        우리들의 일상생활에서 배출하는 쓰레기와 공장 등의 생산활동에 수반하여 발생하는 폐기물은 위생적인 환경을 유지하도록 최종처분 량 삭감을 목표로 하고 또한 환경에 대하여 유해한 영향이 미치지 않도록 처리가 요구되고 있다. 현재 주요 폐기물 처리기술인 소각이 완전산화 형 소각으로 감량과 열 이용을 목표로 하는데 반하여, 가스화는 열분해라는 다양한 이용가능성이 있는 가스를 빼내는 기술이다. 이때 얻어진 가스는 에너지로 이용하게 되지만 가스화만 으로는 이용 폭이 좁아 석유정제처럼 개질(reforming)을 하여 용도에 따라 유용한 가스로 변환・정제할 필요가 있다. 그런 까닭에 본 보고에서는 어떠한 방법으로 폐기물계 바이오매스로부터 유용한 성분을 효율적으로 빼 낼 것인가 혹은 그 반대로 불필요하고 지장이 되는 물질의 생성을 어떻게 억제할 것인가에 역점을 두었다. 그리고 가능한 한 저온에서 처리함으로써 에너지소비를 최대한 억제 할 필요가 있는데, 그것은 촉매이용이 가장 유효한 것으로 파악되고 있다.
        57.
        2015.11 서비스 종료(열람 제한)
        폐기물 에너지는 사업장 또는 가정에서 발생되는 가연성 폐기물을 가공처리하여 얻어지는 고체, 액체, 기체 형태의 연료와 이를 연소 또는 변환시켜서 발생되는 열, 온수, 증기, 전기 등과 같은 에너지를 의미하는데, 대부분의 폐기물에너지는 고형연료 및 소각에 의한 열, 온수 증기의 형태로 얻어진다. 이는 폐기물이라는 연료로서의 불균일성, 가공제품의 품질관리의 어려움에 기인된다. 한편 폐기물은 발생처가 널리 분포되어 있어 수집에 어려움과 지역 이기주의로 인해 발생처 처리가 최적 방법이다. 또한 에너지 자립섬 사업 및 분산형 발전에 연료로서 가연성폐기물의 사용 가능성이 대두되고 있다. 본 연구에서는 전원망이 구축되지 못한 섬지역이나 개도국의 마을단위 또는 산업체에서 독립적으로 운영이 가능한 폐기물 발전 시스템의 개발이 주목적이었으며, 고정층 가스화 반응기 및 가스엔진을 채택 module화하였으며, 반응기 운전을 통해, 가스화 반응기 내부가 4개의 반응zone(Combustion, gasification, pyrolysis, drying)으로 운전될 때, 가스엔진 구동이 가능한 합성 가스가 생성되며, 반응 Zone의 형태 유지 방법에 따라 합성가스 조성이 달라진다. 휘발분이 10%이상 되는 목질계 바이오매스를 공기로 가스화 하였을 경우 1,200kcal/Nm3의 발열량을 갖는 합성가스를 생성할 수 있었으며, 가스엔진 구동에 의한 분산 발전 설비로의 이용이 가능하다. 또한 본 기술 개발에서 채택된 metal foam 촉매를 이용한 tar 제거 시스템은 합성가스의 가스엔진 구동을 가능하게 하여 30%정도의 효율을 나타냈다. 이러한 합성가스 엔진 발전 시스템은 가연성 폐기물로부터 분산형 발전 시스템에 적용 가능한 발전 방식임을 확인되었다.
        58.
        2015.11 서비스 종료(열람 제한)
        폐기물 가스화 합성가스로부터 수소를 생산하기 위해 Cu/Fe2O3, Ni/Fe2O3, 그리고 CuNi/Fe2O3 촉매를 제조하고 고온 수성가스전이반응(High temperature water gas shift reaction, CO + H2O → CO2 + H2)에 적용하였다. 제조된 촉매중 CuNi/Fe2O3 촉매가 매우 높은 공간속도 101,000 h-1에서 가장 높은 CO 전환율 (85%)을 나타내었다. CuNi/Fe2O3 촉매의 뛰어난 활성은 격자변형(lattice strain)의 증가, 격자 산소의 결합에너지 감소, 그리고 촉매 표면에 CuNi 합금의 형성에 기인한 결과이다.
        59.
        2015.11 서비스 종료(열람 제한)
        2005년 유기성폐기물의 직매립이 금지되었다. 또한 유기성폐기물의 해양배출 기준 강화에 따라 2013년부터 음식물류폐기물의 해양배출이 금지되었다. 국내 2013년 음식물류폐기물 발생량은 전체 생활폐기물 중 26.0%인 12,501 톤/일 규모로 배출되고 있으며, 처리량은 2012년 대비 약 58.4%로 매년 급증하고 있다. 최근 음식물류폐기물의 처리방안으로 바이오가스화가 주목받고 있다. 정부는 “폐자원 및 바이오매스 에너지대책 실행계획”(환경부 2009) 등을 바탕으로 바이오가스화 시설의 신규 설치 및 운영을 추진하고 있다. 바이오가스화 시설의 신규 건설이 본격적으로 이루어지는 반면, 운전 효율성은 운전 및 유지관리 미숙, 계절별 영향 등으로 인하여 처리기준에 미치지 못하는 시설이 다수인 실정이다. 본 연구에서는 실제 운영 중인 A지역의 음식물류폐기물 바이오가스화 시설을 대상으로 계절별 산발효조의 정밀모니터링 및 시설 운영인자를 조사・분석하여 계절별 산발효조 상태에 따른 혐기소화조의 운전효율성을 평가하고자 하였다. 산발효조의 현황을 파악하기 위하여 봄, 여름, 가을에 걸쳐 휘발성지방산, 영양물질, CODcr 등의 정밀모니터링을 실시하였다. 또한 해당 시설의 바이오가스 생산량, 휘발성지방산 등과 같은 운영 자료는 2014년 3월부터 2015년 4월까지 약 1년 동안의 데이터를 바탕으로 월별 평균 값을 도출하였다. 분석결과와 운영 자료를 비교·분석한 결과, 여름철 온도의 상승의 영향으로 산발효조 내부에서 음식물류폐기물이 더욱 활발히 분해되어 휘발성지방산의 농도가 증가하였다. 이에 따라 여름철 산발효조의 영향으로 메탄생성율 및 바이오가스의 메탄 함량(%)이 저하되는 경향을 보였다. 특히 메탄생성율은 여름철(6~8월) 30.0~41.03 m³ CH4/tonFWL, 여름을 제외한 다른 계절의 경우 38.6~51.6 m³ CH4/tonFWL로 계절에 따른 차이를 나타내었다.
        60.
        2015.11 서비스 종료(열람 제한)
        최근 화석연료의 고갈, 정부의 신재생에너지 보급정책에 맞추어 바이오매스에 대한 관심이 높아지고 있다. 바이오매스 가스화 공정은 대표적인 신재생연료의 하나인 바이오매스를 가스화반응을 통해 합성가스를 생산하는 친환경적, 탄소 중립적 열적처리 공정이다. 그러나 바이오매스만을 단독으로 가스화 하였을 경우 수급성 및 낮은 발열량으로 인해 문제점이 제기 되고 있다. 따라서 본 논문에서는 사회적으로 처리문제, 건강위해성 문제가 되고 있는 고발열량의 폐플라스틱을 함께 Co-gasification 함으로써 이를 보완하고자 하였다. 또한 본 연구에서는 반응이 용이한 톱밥형태의 목질계 바이오매스와 폐플라스틱 중 많은 비중을 차지하는 Polypropylene(PP), Polyethylene(PE)를 이용하여 여러 조건 변수에 따른 가스화반응 특성을 파악하고, 이러한 혼합원료를 에너지원으로 활용하는데 기초자료를 제공하고자 한다. 바이오매스와 폐플라스틱의 혼합원료 가스화 특성을 파악하기 위해 회분식 반응기를 이용하여 실험을 하였으며 실험 변수는 반응온도와 공기비, 시료의 혼합비율이 고려되었고, 촉매로써 활성탄, 돌로마이트, 올리바인을 사용하여 각각의 변화에 따른 최적의 반응조건을 도출하고 합성가스 조성 및 생성물의 분포특성을 비교 분석하였다. 주요 합성가스 생성물은 CO, H2, CH4로 실험결과 바이오매스와 폐플라스틱 혼합시료는 반응온도가 증가할수록 탄소가 부분 산화되어 일산화탄소가 생성되는 반응, 탄소가 완전 산화되는 반응, 그리고 탄소와 수분이 반응하여 일어나는 수성가스 반응 등의 영향으로 조성비가 증가하여 가스의 발열량이 증가하였다. 또한 PP, PE 혼합 시료의 경우 바이오매스 단독 시료의 가스화보다 생성물이 상대적으로 많이 발생되었음을 확인할 수 있었으며, 혼합비율이 증가할수록 액상생성물 및 타르성분, 왁스성분이 증가하여 가스 생성물의 양이 줄어드는 것을 확인하였다. 촉매의 경우 돌로마이트를 사용할 경우 H2의 생성율이 가장 높았고 올리바인 촉매의 경우 돌로마이트나 활성탄에 비해 크게 합성가스 조성에 긍정적인 영향을 미치지 못했다.
        1 2 3 4 5