검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 171

        81.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        We studied the warming effect induced by Photovoltaic(PV) power plants in rural areas during summer daytime using a simple analytical urban meteorological model. This analysis was based on observed meteorological elements and the capacity of the PV power plant was 10 MWp. The major axis length of the PV power plant was assumed to be 1km. Data of the necessary meteorological elements were obtained from a special meteorological observation campaign established for a over a PV power plant. We assumed that the wind flowed along the major axis of the PV power plant(1 km). As a result, the air temperature on the downwind side of the PV power plant was estimated to invrease by about 0.47 °C.
        82.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        This study investigates the simulation skills of RegCM4 for Diurnal Variations (DV) of temperature and precipitation over South Korea according to the Lateral Boundary Conditions (LBCs) using two sets of 30-yr (1981-2010) integration with two LBCs (RG4_HG2: HadGEM2-AO and RG4_ EH6: EHCAM6). In general, RegCM4 successfully reproduces the DV of temperature irrespective of LBCs and seasons. The DV of temperature is well captured in the coastal region compared to that over inland area irrespective of LBCs and season although the magnitude of DV is underestimated. However, it fails to simulate the early morning peak of precipitation irrespective of LBCs, in particular, for summer and autumn although it captures the late afternoon peak over the inland region. And the impacts of LBCs on the simulation skills of RegCM4 for the DV of precipitation are more prominent during summer than other seasons. As a result, the simulation skill of RG4_HG2 for the DV of temperature is better than RG4_ EH6, but the simulation skill for the DV of precipitation is opposite. In general, the impacts of LBCs on the simulation skills for the DV of temperature and precipitation of RegCM4 are different according to the season, time and geographic location.
        83.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        The interannual variability of summer temperature during June-August (JJA) in South Korea was associated with geopotential height averaged in the East Sea (Korea-Japan Index, KJI) and in the subtropical western North Pacific (Western North Pacific Subtropical High Index, WNPSHI). The KJI was coupled with a decaying El Niño one month in advance, while the WNPSHI was influenced by Sea Surface Temperature (SST) anomaly in the western North Pacific and a developing El Niño one to three months ahead. Additionally, the JJA temperature over South Korea was affected by SST anomaly in the western North Pacific in May. Based on these teleconnections, a multivariate regression model using the SST surrogates for the KJI and WNPSHI and an univariate model using an area-averaged May SST were developed to reconstruct the JJA temperature over South Korea. Both of the empirical models reproduced the JJA and monthly temperatures reasonably well. However, when the simulated SSTs from global climate models were used, the multivariate model outperformed the univariate model. Further, for JJA temperature prediction, the multivariate model with 6-month lead SST outstripped one-month lead prediction of global climate models. Therefore, the empirical-dynamical approach can pave a promising way for summer temperature prediction in South Korea.
        84.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Persistent Extreme Temperature Events (PETEs) are defined in two steps; first, to define extreme temperature events, the 80th and 20th percentiles of daily maximum and minimum temperature were chosen. Then individual PETE was defined as an event which lasted three or longer consecutive extreme temperature days. In this study, we examined characteristics and changes of PETEs in Republic of Korea (ROK) using 14 weather stations with a relatively long-term period of data, 1954-2016. In ROK, PETEs lasted four-five days on average and occurred two-three times a year. PETEs lasted longer in summer than in winter and in maximum temperature than in minimum temperature. PETEs which lasted greater than seven days account for a greater proportion in summer than in winter. However, intensities of PETEs were greater in winter because of a larger temperature fluctuation. In both summer and winter, durations and intensities of persistent extreme high temperature events increased while those of persistent extreme low temperature events decreased. Changes of PETEs were closely related with both global warming and diverse large-scale climate variabilities such as AO, NAO and Nino 3.4.
        85.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        In this study, we analyze changes in soil heat flux and air temperature in August (summer) and January (winter) according to net radiation, at a mud flat in Hampyeong Bay. Net radiation was observed as -84.2~696.2 W/m2 in August and -79.4~352.5 W/m2 in January. Soil heat flux was observed as -80.7~139.5 Wm-2 in August and -49.09~137 W/m2 in January. Air temperature was observed as 24.2~32.9˚C in August and -1.5~11.1˚C in January. The rate of soil heat flux for net radiation (HG/RN) was 0.17 in August and 0.34 in January. Because the seasonal fluctuation in net radiation was bigger than the soil heat flux, net radiation in August was bigger than in January. We estimated a linear regression function to analyze variations in soil heat flux and air temperature by net radiation. The linear regression function and coefficient of determination for the soil heat flux by net radiation was y=0.19x-7.94, 0.51 in August, and y=0.39x-11.69, 0.81 in January. The time lag of the soil heat flux by net radiation was estimated to be within ten minutes in August 2012 and January 2013. The time lag of air temperature by net radiation was estimated at 160 minutes in August, and 190 minutes in January.
        86.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        In order to investigate the effect of air temperature reduction on an urban neighborhood park, air temperature data from five inside locations (forest, pine tree, lawn, brick and pergola) depending on surface types and three outside locations (Suwon, Maetan and Kwonsun) depending on urban forms were collected during the summer 2016 and compared. The forest location had the lowest mean air temperature amongst all locations sampled, though the mean difference between this and the other four locations in the park was relatively small (0.2-0.5℃). In the daytime, the greatest mean difference between the forest location and the two locations exposed to direct beam solar radiation (brick and lawn) was 0.5-0.8℃ (Max. 1.6-2.1℃). In the nighttime, the mean difference between the forest location and the other four locations in the park was small, though differences between the forest location and locations with grass cover (pine tree and lawn) reached a maximum of 0.9-1.7℃. Comparing air temperature between sunny and shaded locations, the shaded locations showed a maximum of 1.5℃ lower temperature in the daytime and 0.7℃ higher in the nighttime. Comparing the air temperature of the forest location with those of the residential (Kwonsun) and apartment (Maetan) locations, the mean air temperature difference was 0.8-1.0℃, higher than those measured between the forest location and the other park locations. The temperatures measured in the forest location were mean 0.9-1.3℃ (Max. 2.0-3.9℃) lower in the daytime than for the residential and apartment locations and mean 0.4-1.0℃ (Max. 1.3-3.1℃) lower in the nighttime. During the hottest period of each month, the difference was greater than the mean monthly differences, with temperatures in the residential and apartment locations mean 1.0-1.6℃ higher than those measured in the forest location. The effect of air temperature reduction on sampling locations within the park and a relatively high thermal environment on the urban sampling locations was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with a high sky view factor and surface types with high evapotranspiration potential (e.g. grass) showed the maximum air temperature reduction. In the urban areas outside the park, the low-rise building area, with a high sky view factor, showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, while in the nighttime the area with high-rise buildings, and hence a low sky view factor, showed high air temperature due to the effect of terrestrial (longwave) radiation emitted by surrounding high-rise building surfaces. The effect of air temperature reduction on the park with a high thermal environment in the city was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with high sky view factor and surface types (e.g., grass) with evapotranspiration effect showed maximum air temperature reduction. In the urban areas outside the park, the high sky view factor area (low-rise building area) showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, but in the nighttime the low sky view factor area (high-rise building area) showed high air temperature due to the effect of terrestrial (longwave) radiation emitted surrounding high-rise building surfaces.
        87.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        We studied the distribution of air temperature using the high density urban climate observation network data of Daegu. The observation system was established in February 2013. We used a total of 38 air temperature observation points (23 thermometers and 18 AWSs). From the distribution of monthly averaged air temperatures, air temperatures at the center of Daegu were higher than in the suburbs. The daily minimum air temperature was more than or equal to 25℃ and the daily maximum air temperature was more than or equal to 35℃ at the elementary school near the center of Daegu. Also, we compared the time elements, which are characterized by the diurnal variation of surface air temperature. The warming and cooling rates in rural areas were faster than in urban areas. This is mainly due to the difference in surface heat capacity. These results indicate the influence of urbanization on the formation of the daily minimum temperature in Daegu.
        88.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        In this paper, we used a nonhomogeneous Gaussian regression model (NGR) as the postprocessing techniques to calibrate probabilistic forecasts that take the form of probability density functions for temperature. We also performed the alternative implementation techniques of NGR, which are stationspecific ensemble model output statistics (EMOS) model. These techniques were applied to forecast temperature over Pyeongchang area using 24-member Ensemble Prediction System for Global (EPSG). The results showed that the station-specific EMOS model performed better than the raw ensemble and EMOS model.
        89.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        This study examined the regime shifts in the temperature difference between Daegu and Jeju for the month of August using a Markov regime switching model. Using the long-term time series of averaged monthly temperature in August for 1923- 2015, we found the two regimes in the temperature difference with the regime shift taking place in 1952. The first regime, which spans the period from 1923 to 1951, is identified as Daegu, on average, being 0.2°C hotter than Jeju. The second regime, which starts in 1952 and persists until 2015, is characterized as the average temperature of Jeju being 0.4°C higher than that of Daegu. The results are consistent with a regime shift in the temperature of Jeju itself from a low temperature regime to a high temperature regime.
        90.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study is to quantify the magnitudes of projected 21st century temperature changes and shifting climate zones over Mt. Halla, Korea based on high-resolution (1km×1km) climate change scenario data sets down-scaled from a global climate model (HadGEM2-AO) simulations using PRIDE (PRISM based Downscaling Estimation Model) as well as the simulations of a Regional Climate Model (RCM; HadGEM3-RA). The high resolution climate data demonstrate that the magnitudes of increases in coldest and warmest monthly mean temperatures over Mt. Halla will exceed those of the averages across the Korean Peninsula during the 21st century, leading to the shifts of climate zones. The isoline with 5°C (20°C) of the coldest (warmest) monthly average temperature associated with sub-tropical (sub-alpine) climate zones will migrate from 100~230m (950~1,300m) to 300~500m (1,300~1,600m) of altitude in the late 21st century (2071~2100) under the RCP 4.5 scenario. These changes are expected to be more obviously observed in the south flank of Mt. Halla as well as under the RCP 8.5 scenario. These results indicate that changes in climate zones will lead to the extinction of sub-alpine ecosystems over Mt. Halla due to increases of summertime heat stress as well as to the expansion of the sub-tropical forest zone toward mid-mountain regions due to reduction of wintertime stress in the warmer 21st century.
        91.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        Intergovernmental Panel on Climate Change (IPCC) provides various prospects of future climate change under the Representative Concentration Pathways (RCP) scenarios using General Circulation Models (GCMs) of Coupled Model Intercomparison Project (CMIP). This paper describes a modified application of Ensemble Bayesian Model Averaging (EBMA) to produce daily mean temperature ensembles using 19 GCMs provided by CMIP. We proposed two types of approach: (1) monthly weighting scheme for a whole area (EBMA.v1) and (2) monthly weighting for each grid point (EBMA.v2), which can take into account the spatially heterogeneous pattern of GCM. For the training period of 1979- 2005 for East Asia, 9,855 sets of daily temperature ensembles (27 years × 365 days) were produced and compared to the ERA-Interim reanalysis data of European Centre for Medium-Range Weather Forecasts (ECMWF), which showed better validation statistics than the general mean and median ensembles. In particular, EBMA.v2 outperformed EBMA.v1 by diminishing the large errors of inland areas where the surface heterogeneity is larger than the ocean. The EBMA.v2 was able to handle the problem of spatial variability by employing monthly and spatially varying weighting scheme. We finally produced daily mean temperature ensembles for the period of 2006-2100 by using the EBMA.v2 under the RCP 6.0 scenario, which are going to be provided on the web.
        92.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        Regional climate simulations for the CORDEX East Asia domain were conducted between 1981 and 2100 using five models to project future climate change based on RCP2.6, 4.5, 6.0, and 8.5 scenarios. By using the ensemble mean of five model results, future changes in climate zones and four extreme temperature events of South Korea were investigated according to Köppen-Trewartha’s classification criteria. The four temporal periods of historical (1981-2005), early future (2021-2040), middle future (2041-2070), and late future (2071-2100) were defined to examine future changes. The analysis domain was divided into 230 administrative districts of South Korea. In historical (1981-2005) period, the subtropical zones are only dominant in the southern coastal regions and Jeju island, while those tend to expand in the future periods. Depending on the RCP scenarios, the more radiative forcing results in the larger subtropical zone over South Korea in the future. The expansion of the subtropical zone in metropolitan areas is more evident than that in rural areas. In addition, the enlargement of the subtropical zone in coastal regions is more prominent than that of in inland regions. Particularly, the subtropical climate zone for the late future period of RCP8.5 scenario is significantly dominant in most South Korea. All scenarios show that cold related extreme temperature events are expected to decrease and hot related extreme temperature events to increase in late future. This study can be utilized by administrative districts for the strategic plan of responses to future climate change.
        93.
        2017.06 서비스 종료(열람 제한)
        Urban green spaces can mitigate negative impacts of urban heat island effect by creating cooling buffer zones. These cooling areas improve micro-climatic conditions and human health. Green space is important to reducing urban air temperature maxima and variation. Thus, there is an expectation that small green spaces (SGs) provide high cooling effects and thus make air temperatures drop. Meanwhile, such an effect in urban areas has been under-explored and needs more detailed spatial and temporal data. The purpose of the study was to develop a measurement method to detect temperature of various SGs with TVC and find the effect of TVC on accuracy of measured air temperature data in comparison with other non ventilation devices. We updated the cad file of the study site through comparing it with Google Map and conducting field surveys on the site. Transect survey was required to build a measurement route. We toured the study site by walk repeatedly to get the optimistic route which would have enough data points. One of considered routes which were inside of the forest and could make us get significantly influencing data was not founded for no trails so excluded in our study. After the field survey, we observed the study routes through a digital camcorder (Gopro) and recorded them on the cad file of the site because these data points should include air temperature and time data in their attribute table. As for transect survey, a researcher walked through the defined routes and collected air temperature data with two TVCs every second and two Testo loggers covered by aluminum foil every minute at the height of 1.5m from the ground. Stationary survey was conducted with two TVCs in every second data collection and two Testo loggers covered by aluminum foil in every minute data collection on the resting area at the entrance of the site. One of TVCs and one of Testo loggers were set at the height of 0.5m while the others of TVCs and Testo loggers were at the height of 1.5m. On the stationary point, other microclimate variables such as wind velocity, wind direction and solar irradiance were also measured and recorded every minute. We repeated the measurement for one day or two days a month (November, 2016 ~ May, 2017) and four times a day. The measuring days were selected when they were clean and calm. As a result, air temperature from TVCs was entirely lower than that from Testo loggers on the stationary survey. This trend was shown during the day rather than after sunset. The difference of air temperature from between TVCs and Testo loggers ranged from 2 ℃ after sunset to 5 ℃ at 16h. At the height of 0.5m, a Testo logger's data showed much higher than a TVC's data. These results show that Testo loggers tend to be easily influenced by the change of solar radiation. Moreover, there was the ventilation effect at the stationary. So no ventilation could be the main reason why Testo loggers' data were high. However, TVCs' lower temperature explains how effectively these devices block the solar radiation and ventilate air inside the cylinder.
        94.
        2017.05 서비스 종료(열람 제한)
        Background : Management of air temperature are known to primarily affecting on physiological properties and yield in plant. Methods and Results : The effect of air temperature on characteristics of photosynthesis and chlorophyll fluorescence in Cnidium officinal were investigated using growth chamber after cultivating for 24 hours under controlled condition. Net photosyntheis rate, transpiration was measured at 1,000 μmol m-2 s-1 of photon flux density and chlorophyll fluorescence was analyzed by OJIP method. Net photosyntheis rate was highest in treatment of 25℃. Although transpiration rate was lowest, water use efficience was also in treatment of 25℃. Stomatal conductance was mainly influenced from ambient climatric factors such as vapor pressure deficit. As results of chlorophyll fluorescence by OJIP analysis, maximum quantum yield (Fv/Fm) of photosystem II (PSII), PIabs and the relative activities per reaction center such as ABS/RC, DIo/RC were not changed at air temperature. Therefore, elevated air temperatue during short term influence the dark reaction in photosystem through controlling a water use efficience and transpiration. Conclusion : This result show that 25℃ of air temperature may be a adequate temperature to improving the efficiency of photosynthesis in Cnidium officinale.
        95.
        2017.04 서비스 종료(열람 제한)
        This study examined the effect of outside temperature on the properties of high-strength concrete to determine conditions for four-season construction. With 20 ℃ as the reference temperature, 20, 30, and 40 ℃ were set as hot weather conditions, and 5, -10, and –20 ℃ as cold weather conditions. Properties as the effect of outside temperature on compressive strength of high-strength concrete was studied.
        96.
        2017.04 서비스 종료(열람 제한)
        In this research, the investigation of the temperature condition of reinforcing bars under laboratory temperature and outside temperature conditions in the insulation curing method of Korean-Chinese concrete bubble sheet to examine the suitability of the bubble sheet curing method. As a result, the heat of hydration of the concrete on the wall part affects the exposed reinforcing bars to delay the temperature drop at the part where the bubble sheet is not laid
        97.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        In this paper, for selected station of 8 clusters in East Asia (Park, 2017) more (less) warming periods than the wintertime mean warming of intra-seasonal fluctuation curves were taken and their means were computed. Long term trends and synoptic features of the mean temperature changes were examined. In most clusters, around the third of January there were less warming periods (LWP) than the mean wintertime warming. On the contrary, in February and the first and second of January there were more warming periods (MWP) than the winter mean or LWPs having a warming trend with statistical signicance. Time series of the daily Siberian High indices showed they had been weakening in February and being stagnant around late January. In most stations, the mean temperatures of MWP or LWP had large negative correlation coecients with the Siberian high intensity. is result explains the occurrences of MWPs in most clusters in February and LWPs in late January. In cluster B there were LWPs in early February due to the influence of the Aleutian Low which were strengthening in that periods. Cluster E showed different features without LWPs in late January. The cluster is considered to be affected by its plateau environment of West Yúnnán and the Tibet Plateau which prevent cold air of the lower atmosphere in Northern Asia flowing southward, and by the regional atmospheric circulation of 500hPa surface centered in this region.
        98.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        In this study, the intra-seasonal fluctuation (ISF) of wintertime temperature change in East Asia was classified by a cluster analysis of complete linkage. A ISF of temperature change was defined as a difference of synthesized harmonics (1 to 36 harmonic) of daily temperature averaged for 30 years (1951~1980, 1981~2010). Eight clusters were gained from the ISF curves of 96 stations in East Asia. Regions of the cluster C, G and A1 seem to be affected by the Siberian High (SH) center, whereas the cluster A1, A2, D, B and F by the SH main pathways. Regions of the cluster E are apart from the SH main pathways and appear to be in the area of influence of other factors. Wintertime temperatures in Northwest China (clusters C, G) and Northeast China (cluster A1) were increased very largely. In most clusters, around late January there were less warming periods than the winter mean of the mean ISF of the clusters, before and after this time there were more warming periods than the winter mean.
        99.
        2017.02 KCI 등재 서비스 종료(열람 제한)
        This study investigated the characteristics of variations in carbon dioxide concentration and air temperature with the vertical change of surface in a grassplot. Field observations were carried out at a grassplot in Gyeongnam Science High School, over four days in August and November, 2015. Continuous observation equipment (GMP343, VAISALA) was installed at the LP (0.1 m from the surface) and UP (1.1 m from the surface) points, and the carbon dioxide concentration and air temperature were measured simultaneously at 1-min intervals. To summarize the results of the observation, August had higher than average concentrations of carbon dioxide, while November showed average air temperatures. Moreover, the concentration of carbon dioxide was higher at the UP point, while the air temperature was higher at the LP point. The correlation coefficient of carbon dioxide concentration between the UP and LP points was 0.80 in August across all the four days, while it was higher in November at 0.58 0.95. The results of the regression analysis of carbon dioxide concentration with air temperature changes for both August and November showed a distinct change at the LP point (R2=0.36 0.76), as compared to the UP point (R2=0.1 0.57). Between the UP and LP points, the carbon dioxide concentration and air temperature regression analysis results indicated that an active exchange was taking place between the two points.
        100.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        This study examined the effect of outside temperature on the properties of high-strength concrete to determine conditions for four-season construction. With 20 ℃ as the reference temperature, 20, 30, and 40 ℃ were set as hot weather conditions, and 5, -10, and –20 ℃ as cold weather conditions. Properties as the effect of outside temperature on compressive strength of high-strength concrete was studied.
        1 2 3 4 5