검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 649

        101.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Energy saving in household refrigerators becomes more important as the usage of household refrigerators have been increasing every year. Since a compressor in the refrigerator consumes more than 80% of its total energy, it is necessary to reduce the energy consumption of the compressor. In this paper, the convective heat transfer coefficients on the compressor housing for both natural convection and forced convection were measured. Then, the effect of convective heat transfer coefficient on the power consumption of a refrigerator was investigated using a thermal management analysis. The results showed that convective heat transfer coefficient for forced convection is higher by 7.8 W/m²K compared to the natural convection. In addition, through the thermal management analysis, it was found that the increase in convective heat transfer coefficient reduces the refrigerator power by about 4.8% improving EER by 0.9%.
        4,000원
        102.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The autoignition characteristics of n-heptane/n-butanol were investigated both experimentally and numerically. The effects of oxygen concentration and exhaust gas recirculation rate on the autoignition characteristics were evaluated. A rapid compression machine was employed to measure ignition delay times of blended fuels. A numerical study on the ignition delay time was performed using the CHEMKIN-PRO software to calculate ignition delay time and predict the chemical species in the combustion process. The results revealed that the ignition delay time increased with decreasing oxygen concentration due to the thermal load effect of nitrogen. The oxidation reaction of n-heptane in a low temperature regime was limited with decreasing oxygen concentration. The ignition delay time sharply decreased with exhaust gas recirculation because of the intermediate species in the exhaust gas. Exhaust gas recirculation reduced first ignition delay dramatically. However, the time interval between the first and main ignition increased with increased exhaust gas recirculation.
        4,000원
        103.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and 0.32 g/cm3 of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10%, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.
        4,000원
        104.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A strain-gradient crystal plasticity finite element method(SGCP-FEM) was utilized to simulate the compressive deformation behaviors of single-slip, (111)[101], oriented FCC single-crystal micro-pillars with two different slip-plane inclination angles, 36.3o and 48.7o, and the simulation results were compared with those from conventional crystal plasticity finite element method(CP-FEM) simulations. For the low slip-plane inclination angle, a macroscopic diagonal shear band formed along the primary slip direction in both the CP- and SGCP-FEM simulations. However, this shear deformation was limited in the SGCP-FEM, mainly due to the increased slip resistance caused by local strain gradients, which also resulted in strain hardening in the simulated flow curves. The development of a secondly active slip system was altered in the SGCP-FEM, compared to the CP-FEM, for the low slip-plane inclination angle. The shear deformation controlled by the SGCP-FEM reduced the overall crystal rotation of the micro-pillar and limited the evolution of the primary slip system, even at 10% compression.
        4,000원
        106.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Impact damage tolerance is an important design requirement for composite structures. In this study, the effect of post impact damage and hole size of the composite sandwich skin / sandwich with core specimen on compressive strength of the laminate was analyzed. Three specimen tests were performed in this research. Two tests were carried out on pure bending test specimens subjected to impact damage to the skin and specimen with a hole in one of its skin as a damage. Through this test, we compared the reduction of compressive strength due to the size of skin damage and the size of the hole. Also, core-free specimen with an open hole under uniaxial loading were tested to produce reference data for comparison with the series tested earlier. As results of the tests, the sandwich beams with damage size and open hole are almost identical, and we concluded that the prediction of compressive strength reduction after impact of the sandwich skin structure can be predicted using an analytical model assuming skin open hole as impact inputs.
        4,000원
        107.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        고준위폐기물을 처분하기 위한 심층 처분시설은 지하 500~1,000 m 깊이의 암반층에 설치된다. 심층 처분시스템의 구성 요 소로는 처분용기, 완충재, 뒷채움 및 근계 암반이 있다. 이 중 완충재는 심층 처분시스템에 있어 필수적인 요소인데, 완충재 는 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지한다. 처분용기에서 발생하는 고온의 열량은 완충 재로 전파되기에 완충재의 열물성은 처분시스템의 안정성 평가에 상당히 중요하다고 할 수 있다. 완충재의 열전도도 규명 에 대한 연구는 많이 진행되고 있는 반면, 비열에 대한 연구는 미진한 상태이다. 따라서 본 연구에서는 국내 경주산 압축 벤 토나이트 완충재(KJ-II)에 대한 비열 추정 모델을 개발하고자 하였다. 압축 벤토나이트 완충재의 비열은 이중 탐침법을 이용 하여 다양한 포화도와 건조밀도에 따라 측정하였으며, 총 33개의 실험 데이터를 토대로 회귀분석을 이용하여 경주 압축 벤 토나이트의 비열을 추정할 수 있는 모델을 제시하였다.
        4,000원
        108.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Preservation of wooden structure due to deterioration and corrosion is based on preservation of original form, and wooden member should not be arbitrarily replaced or damaged. Accordingly, preservation processing method with synthetic resins is embossed. But it has an adverse effect because there is no exact standard for the reinforcement ratio with the synthetic. This paper experimental study for reinforcement ratio of wooden compressive member with synthetic resins, Reinforced ratio on section area of compressive member and direction. As a result, synthetic resin reinforcement selected as experimental variables by proper ratio enhanced compressive capacity of reinforced wooden member, than new wooden member.
        4,000원
        109.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An electric steam boiler equipped with a condensate recovery system, which stores the condensate generated after using steam in steam washers, steam cookers, steam irons, and steam cleaners in a condensate tank and supplies compressed air to the condensate tank so that the condensate is recovered to the boiler by the pressure of the compressed air, was studied. In the results of this study, the heat energy balance between the quantity of the heat generated by the non-metallic surface heating element and the quantity of the heat absorbed by the water was good in a range of ±5%. In addition, the heat transfer rate increased in proportion to the electric power of the surface heating element heater, the waste heat energy was normally recovered by the recovery of the condensate of the steam boiler equipped with the high compression waste heat recovery system, and the recovery rate of the waste heat exhibited 23%.
        4,000원
        110.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        왕복동식 압축기에서 피스톤과 커넥팅로드는 중요한 부분이다. 이러한 주요부에 기계적 부하가 과도하게 가해지면 해당 기부 속이 손상될 수 있으며, 교체하기도 쉽지 않고 비용도 많이 든다. 따라서 내구성과 수명에 영향을 미치는 요인을 분석할 필요가 있다. 본 연구의 주요 목적은 피스톤과 커넥팅로드의 최대 응력 집중 위치를 확인하는 것이다. 이를 위해 설계된 공기압축기의 작업 공정의 동적 계산을 기반으로 피스톤 및 커넥팅로드의 응력 분석을 수행하였다. 공기압축기의 피스톤과 커넥팅로드의 3 차원 모델을 따로 설계하고, 이러한 부품들의 유한요소 해석은 수치해석적인 근사해법을 사용하였다. 피스톤은 열 경계 조건 없이 크랭크 샤프트의 각도에 따라 압 력 부하를 받는다. 시뮬레이션 결과는 피스톤과 커넥팅로드의 응력 집중 위치와 그 값을 예측하고 추정할 수 있다. 그 결과 크랭크 각도 135°와 225°에서 피스톤은 190MPa, 커넥팅로드는 123MPa 이상의 최대 등가응력이 나타났으며 이는 인장 항복강도 이하의 값이다. 또한, 커넥팅로드와 피스톤에 계산 된 안전 계수는 1보다 높게 나타났다. 더욱이, 이러한 결과는 왕복동 공기압축기 제작사에 피스톤 및 커넥 팅로드를 설계함에 있어서 최적화를 위한 참고 자료로 활용 될 수 있다.
        4,000원
        111.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, FLUENT v.16.1 was used to investigate the compressible flow generated by the supersonic jet spewed from a high pressure tube. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature of air was constantly 300 K and the variation of JPR (Jet Pressure Ratio) were 5, 50, 100, 150 and the variation of tube diameter were 10, 20, 30 cm. As a result, it was confirmed that the effective range was increased as the JPR was higher, but it was confirmed that the effective range was lower than the JPR rise, and that the effective range was increased as the diameter was larger. Therefore, it is found that the tube diameter is more sensitive than the JPR among the influence factors of jet, and if the result of this study were reflected in the design of high pressure system, it will contribute to the design of the system for preventing the second accident.
        4,000원
        112.
        2017.04 구독 인증기관·개인회원 무료
        As the ridges become larger and larger, a structural type that enables effective utilization of the long span and space is required. In the construction stage, the steel column supports the installation load. However, in order to secure the stability against the out - of - plane deformation of the steel column due to the lateral pressure when the concrete is laid, a binding frame is installed inside the steel pipe at constant intervals to resist the concrete installation pressure. When the concrete is cured and its performance as a composite section is exerted, a stress is generated which pushes the steel pipe out of the plane by the column compressive force. In this case, since the binding frame controls the deformation, the local buckling is delayed and the constraining effect on the concrete is increased. In order to evaluate the structural performance and behavior of the composite mega column according to the eccentricity effect and the effect of the binding frame, we carried out a structural test by fabricating eight monopole specimens with the binding frame reinforcement, reinforcing gap, reinforced cross section and eccentricity , And the experimental results are compared with the KBC2016 design formula.
        113.
        2017.04 구독 인증기관 무료, 개인회원 유료
        The utilization of composite columns is increasing due to the construction of high-rise buildings and large buildings. The commercially available concrete chimney steel column (ACT I) is a stable and economical structure, but there is a limit in the section size to be applied to a composite column subjected to a high load. We have developed a composite mega column with an integral structure by adding a plate to the central part of the ACT I column and installing a binding frame at a certain interval inside the central plate. In this study, to evaluate the compressive performance of the composite mega column, four test specimens were constructed with binding frame reinforcement, reinforcement spacing, and reinforced cross - sectional area. The structural performance of the composite section is compared with that of KBC2016 to evaluate the behavior of the specimen.
        3,000원
        114.
        2017.04 구독 인증기관 무료, 개인회원 유료
        Recently, as the number of earthquakes has increased, the building structure standard has been revised in 2016. In order to minimize earthquake damage, steel frame is used as the most economical and efficient lateral resistance system. Also, when the steel braces are subject to Compressive load, which causes unstable behavior of the structure. In order to verify the compressive behavior of the reinforced Braces, structural performance tests were conducted with variables of slenderness ratio and the amount of reinforcement. This study investigates the structural performance of existing double - angle steel braces by reinforcing them with non- welded/assembled light-weight steel frames and proposes a suitable reinforced section.
        3,000원
        115.
        2017.04 구독 인증기관·개인회원 무료
        The refrigerant temperature of a compressor increases due to heat generated in the discharge chamber and the motor. The increase of the suction temperature raises the superheat resulting in EER reduction. Thus, accurate superheat prediction is needed for the design of an efficient compressor. In this paper, the unsteady flow analysis is performed using CFD to predict the superheat. The results show that the suction temperature increases by about 26 °C which agrees well with the experiments.
        116.
        2017.04 구독 인증기관·개인회원 무료
        Abstract The increase of the superheat is one of several factors adversely affecting the efficiency of the refrigeration cycle. To this end, it is important to release the heat inside the compressor. Therefore, in this paper, we have increased the convective heat transfer coefficient inside the compressor by utilizing the vibration of the moving part of the compressor. The results show that reducing the gap between the shell and the moving part increases the flow velocity in the gap resulting in the increase of convective heat transfer coefficient.
        117.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES:Emulsified asphalt is critical for road construction. The objective of applying asphalt emulsion as an adhesive is to prevent the phenomenon of debonding between the upper and lower layers. The quantity and veriety of bituminous material can be varied according to the type of pavement and site conditions. The objective of this study is to reveal the optimum application rates of the emulsified asphalt materials by types of tack-coats using Interface Shear Strength(ISS).METHODS:In the research, emulsified asphalt was paved on the surface of the divided mixture. The specimens of paving asphalt emulsion were utilized to evaluate the bond strength of tack-coat materials. In the evaluation process, NCHRP Report 712 was utilized to investigate the Interface Shear Strength, which reflects the bond capacity of asphalt emulsion. Then, the optimum residual application rates by tack-coat types were determined using regression analysis.RESULTS:As a consequence of squared R values investigated from 0.7 to 1 as part of the regression analysis, the tendency of predicted ISS values was compared with the results. The optimum residual application rates of AP-3, RS(C)-4, QRS-4, and BD-Coat were determined to be 0.78ℓ/m2, 0.51ℓ/m2, 0.53ℓ/m2, and 0.73ℓ/m2, respectively, utilizing 4th regression analysis.CONCLUSIONS:Based on the result of this study, it was not feasible to conclude whether higher residual application of tack-coat material leads to improved bond capacity. Rather, the shearing strength varies depending on the type of pavement.
        4,000원
        119.
        2017.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper is concerned with a test method that can be used to investigate the parameters of the Johnson-Cook constitutive model. These parameters are essential for accurately analyzing material behavior under impact loading conditions in numerical simulation. Ti-6Al-4V alloy (HCP crytal structure) was used as a specimen for the experiments. In the 10−3-103/ s strain rate range, three types of experimental methods (convention, compression and tension) were employed to compare the differences using MTS-810, SHPB and SHTB. Finite element analysis results when applying these parameters were displayed along with the experiment results.
        4,000원
        120.
        2017.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to a lack of the hoop action of lateral reinforcements the effective confining force in rectangular sections reduces compared to circular ones. Therefore, the stress-strain model obtained from the experimental data with circular sections overestimates the lateral confinement effect in rectangular sections, which evaluates seismic safety margin of overall structural system excessively. In this study experiments with laterally-confined square sections have been performed and the characteristic values composing stress-strain model have been analyzed. With introduction of section coefficients, in addition, the new unified stress-strain model applicable to square sections as well as circular ones has been proposed.
        4,000원