검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 84

        81.
        2002.03 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.
        82.
        2000.12 KCI 등재 서비스 종료(열람 제한)
        This study aims at the development of the model for a forecasting of water quality in river basins using artificial neural network technique. Water quality by Artificial Neural Network Model forecasted and compared with observed values at the Sangju 1 and Dalsung stations in Nakdong river basin. For it, a multi-layer neural network was constructed to forecast river water quality. The neural network learns continuous-valued input and output data. Input data was selected as BOD, DO, discharge and precipitation. As a result, it showed that method Ⅲ of three methods was suitable more than other methods by statistical test(ME, MSE, Bias and VER). Therefore, it showed that Artificial Neural Network Model was suitable for forecasting river water quality.
        84.
        1997.12 KCI 등재 서비스 종료(열람 제한)
        Along with the rapid growth of shipping and transportation , the size of a ship larger and larger. Low speed maneuverabililty of a full ship has been received a great deal of attention concerting about the navigation safety, especially in the harbour area of waterway. And, the iperation of the full ship in harbour area is one fo tehmost difficult technique. Usually highly experienced experts can make a suitable decision considering various propeller ,rudder actions and environmental conditions. The Artificial Neural Network is applied to the automatic berthing control of a ship. The teaching data are made by the berthing simulation of a ship on the computer. And, the layer neural network is used and the 'Error Back-Propagation Algorithm' is used to teach the neural network. Finally, it is shown that the berthing control is successfully done by the established neural network.
        1 2 3 4 5