검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 40

        1.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.
        4,000원
        3.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520oC. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515oC following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.
        4,000원
        4.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.
        4,000원
        5.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal additive manufacturing (AM) has transformed conventional manufacturing processes by offering unprecedented opportunities for design innovation, reduced lead times, and cost-effective production. Aluminum alloy, a material used in metal 3D printing, is a representative lightweight structural material known for its high specific strength and corrosion resistance. Consequently, there is an increasing demand for 3D printed aluminum alloy components across industries, including aerospace, transportation, and consumer goods. To meet this demand, research on alloys and process conditions that satisfy the specific requirement of each industry is necessary. However, 3D printing processes exhibit different behaviors of alloy elements owing to rapid thermal dynamics, making it challenging to predict the microstructure and properties. In this study, we gathered published data on the relationship between alloy composition, processing conditions, and properties. Furthermore, we conducted a sensitivity analysis on the effects of the process variables on the density and hardness of aluminum alloys used in additive manufacturing.
        4,000원
        6.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061/AA5052 layered sheet. Two AA6061 and one AA5052 sheets of 2mm thickness, 40mm width and 300mm length are alternately stacked, then reduced to a thickness of 2.0 mm by multi-pass cold rolling after surface treatment such as degreasing and wire brushing. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at a rolling speed of 6.0 m/sec. The roll-bonded AA6061/AA5052/AA6061/AA5052 layered sheet is then hardened by natural aging (T4) and artificial aging (T6) treatments. The microstructure of the as-roll bonded and the age-hardened Al sheets was revealed by SEM observation; the mechanical properties were investigated by tensile testing and hardness testing. After T4 and T6 aging treatment, the specimens had a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 regions. The as-roll-bonded specimen showed a clad structure in which the hardness of AA5052 regions was higher than that of AA6061 regions. However, after T4 and T6 aging treatment, specimens exhibited different structures, with hardness of AA6061 regions higher than that of AA5052 regions. Strengths of T6 and T4 age-treated specimens were found to increase by 1.55 and 1.36 times, respectively, compared to the value of the starting material.
        4,000원
        7.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The cutting quality of abrasive water jet cutting of aluminum alloy(Al-5083) for shipbuilding is affected by the surface roughness, cutting pressure, cutting speed, and the distance between nozzle and material. The cross-section of water jet cutting is formed a V-shape as the cutting speed increase. The upper width(kerf width) is wide and the lower surface is narrow. The width of cutting cross-sections are effected in the order of cutting speed, cutting pressure, and distance between nozzle and material. From the experimental results, to improve of cutting quality of abrasive water jet cutting of aluminum alloy(Al-5083) for shipbuilding, the optimal cutting conditions to improve the surface roughness and kef width are proposed and discussed.
        4,000원
        8.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        알루미늄합금 6061-T6 판재에 대하여 마찰교반용접과 텅스텐 이너트 가스 용접의 교차 용접부의 미세조직과 기계적 특성에 있어서 용접 순서의 영향을 분석하기 위한 시험편을 성공적으로 제작하였다. FSW-ED 시험편이 다른 조합들보다 가장 좋은 기계적 특성을 나타내었다. 흥미롭게도, TIG-FSW ED 시험편이 FSW-TIG ED 시험편보다 높은 인장강도를 나타내었다. 용접부 경도의 경우, FSW 시편이 TIG-FSW 및 FSW-TIG 시험편보다 높은 값을 나타내었고, TIG-FSW 시험편이 FSW-TIG 시험편보다 높은 값을 나타내었다. FE-SEM을 이용한 인장 파면에 대한 관찰을 통하여, 모든 시험편에서 연성파괴를 나타내는 다양한 크기의 딤플들이 관찰되었다. FSW-TIG 시험편의 파면에서는 용융지(熔融池) 표면 영역에서 기공들이 관찰되는 반면, TIG-FSW 시험편에서는 기공의 형성은 관찰되지 않았다. 경도와 미세조직의 결과를 통해 TIG-FSW 공정이 FSW-TIG 공정보다 높은 인장강도를 확보할 수 있는 공정임을 확인하였다.
        4,000원
        9.
        2021.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the fabrication of joined materials between anodized aluminum alloy and polymer, the performance of the metalpolymer joining is greatly influenced by the chemical properties of the oxide film. In a previous study, the dependence of physical joining strength on the thickness, structure, pore formation, and surface roughness of films formed on aluminum alloys is investigated. In this study, we investigated the effect of silane coupling treatment on the joining strength and sealing performance between aluminum alloy and polymer. After a two-step anodization process with additional treatment by silane, the oxide film with chemically modified nanostructure is strongly bonded to the polymer through physical and chemical reactions. More specifically, after the two-step anodization with silane treatment, the oxide film has a three-dimensional (3D) nanostructure and the silane components are present in combination with hydroxyl groups up to a depth of 150 nm. Accordingly, the joining strength between the polymer and aluminum alloy increases from 29 to 35 MPa, and the helium leak performance increases from 10−2-10−4 to 10−8-10−9 Pa m3 s−1.
        4,000원
        10.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, experiments and simulations were performed for fillet joint friction stir welding according to tool shape and welding conditions. Conventional butt friction stir welding has good weldability because heat is generated by friction with the bottom of the tool shoulder. However, in the case of fillet friction stir welding, the frictional heat is not sufficiently generated at the bottom of the tool shoulder due to the shape of the tool and the shape of the joint. Therefore, it is important to sufficiently generate frictional heat by slowing the welding speed as compared to butt welding. In this study, experiments and simulations were carried out on an aluminum battery housing made by friction stir welding an extruded material with a fillet joint. The temperature of the structure was measured using a thermocouple during welding, and the heat source was calculated through correlation analysis. Thermal elasto-plastic analysis of the structure was carried out using the calculated heat source and geometric boundary conditions. It is confirmed that the experimental results and the simulation results are well matched. Based on the results of the study, the deformation of the structure can be calculated through simulation even if the tool shape and welding process conditions change.
        4,000원
        11.
        2020.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of Sm addition (0, 0.05, 0.2, 0.5 wt%) on the microstructure, hardness, and electrical and thermal conductivity of Al-11Si-1.5Cu aluminum alloy were investigated. As a result of Sm addition, increment in the amount of α-Al and refinement of primary Si from 70 to 10 μm were observed due to eutectic temperature depression. On the other hand, Sm was less effective at refining eutectic Si because of insufficient addition. The phase analysis results indicated that Sm-rich intermetallic phases such as Al-Fe-Mg-Si and Al-Si-Cu formed and led to decrements in the amount of primary Si and eutectic Si. These microstructure changes affected not only the hardness but also the electrical and thermal conductivity. When 0.5 wt% Sm was added to the alloy, hardness increased from 84.4 to 91.3 Hv, and electric conductivity increased from 15.14 to 16.97 MS/m. Thermal conductivity greatly increased from 133 to 157 W/m·K.
        4,000원
        12.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys are the light weight materials, they are commonly used in many industrial applications such as electronic, aerospace, automotive, and medical industry. Because they are used in these such applications. Therefore, their light weight and high surface quality are required. In this paper, the surface improvement round flat aluminum alloy using lapping finishing method was explored. In order to find the optimal condition, lapping parameters such as, rotational speeds, abrasive grain sizes of pad, processing times, and lapping oils were investigated in this study. The improvement in surface roughness was found to be highest with optimal condition at 200 rpm of rotational speed, 1 ㎛ abrasive grain size of pad, 0.5ml of light oil for 720 sec. By using the optimal condition, the initial surface roughness Ra of round flat aluminum alloy can be enhanced from 2.59㎛ to 0.02 ㎛. This can be concluded that the small CNC machine with lapping finishing method can be used to enhance the surface roughness of round flat aluminum alloy effectively.
        4,000원
        13.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we investigate the recycling of aluminum-based metal matrix composites(AMCs) embedded with SiC particulates. The microstructure of the AMCs is characterized by X-ray diffraction and scanning electron microscopy. The possibility of recycling the composite scrap is attempted from the melted alloy and SiC particulates by re-melting, holding and solidification in crucibles. The recovery percentage of the matrix alloy is calculated after a number of holding times, 0, 5, 10, 15, 20, 25 and 30 minutes and for different particulate sizes and weight fractions in the Al matrix. The results show that the recovery percentage of the matrix alloy, as well as the time required for maximum recovery of the matrix, is dependent on the size and weight fraction of SiC particulates. In addition, the percentage recovery increases with particulate size but drops with the particulate fraction in the matrix. The time to reach maximum recovery falls rapidly with an increase in particulate size and fraction.
        4,000원
        14.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of pre-aging treatment for inhibition of natural aging of Al-4.8Zn-1.3Mg alloy by extrusion process was investigated. Firstly, the as-cast microstructure of Al-4.8Zn-1.3Mg alloy billet and its evolution during homogenization(460℃, 4h + 510℃, 5h) were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness analysis. The as-cast microstructures of Al-4.8Zn-1.3Mg alloy reveal Mg2Zn, Al5Cu, Al3Cu formed between dendrities. After homogenization, MgZn, Al4Cu, Al13Cu phases precipitated into the matrix. In addition, standard deviation of homogenized billet was improved than as-cast billet from 2.62 to 0.99. According to pre-aging(100℃, 1h) Al-4.8Zn-1.3Mg alloy by extrusion process, yield strength and tensile strength deviation improved more than condition by natural aging.
        4,000원
        16.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the whole process of 6xxx series aluminum extruded alloy for high speed train interior and exterior parts are characterized. The mechanical properties, and chemical composition of the case materials were evaluated for the 6063, 6061 and 6N01 alloy profiles and compared to the commercial materials and the evaluation results satisfied the standard. The cast product was extruded using the air slip(AS) casting method and the direct casting(DC) method and these were again heat-treated conditions with T5 or T6. The remarkable point is that the extrusion temperature and pressure of 6061 alloy were somewhat higher than those of other alloys. The reason is that 6061 alloy exhibited brittle fracture due to grain boundary segregation even at the tensile fracture surface and the fact that the product used a billet by the direct casting method instead of air slip one. The mechanical properties were evaluated for the 6063, 6061, 6N01 extruded alloys and the evaluation results were analyzed and satisfied the standard properties.
        4,000원
        17.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the extrusion process of 6xxx series aluminum cast alloy for high speed train interior or exterior parts are developed. For casting, selection of optimum alloying elements, dissolution technology, de-gassing process, production of molds conforming to the conditions of use, development of casting process control technology for various shapes and materials are performed for the development of high-quality, high strength aluminum alloys. The development of more high farmable extruded aluminum casting alloys for interior or exterior materials has been the scope of this study. The extruded die design was performed for the 6063, 6061 and 6N01 alloy profiles and extrusion test was executed. From these results, the extrusion conditions such as extrusion pressure following as billet temperature and materials were carefully examined.
        4,000원
        18.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the laser welding experiments were performed with the 1 mm thickness of Al 6061-T6 using by 5 kW fiber laser welding system. The optimum laser welding condition of the lap joint has been investigated by analyzing the penetration depth and the porosity fraction through observation of the cross-sections. Based on the test results, the sound joint was obtained from the welding condition with the power of 2 kW and the focal position of -0.8 mm at the continuous laser welding speed of 2 mpm. Also, the tensile strength of the sound joint after heat treatment(170℃, 12hr) was increased almost 87% that of the base material. Especially, the fatigue test result of the sound joint showed that the fatigue cycle was 3×10 4 at the highest test load of 100 MPa.
        4,000원
        20.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The mechanical properties and microstructures of Aluminum 6056 alloys were investigated for their use in the fabrication of a piton block. The EN-AW6056 alloys exhibited a tensile strength of 375 MPa for a solution treatment temperature of 550 oC for 2 h followed by an aging treatment at 190 oC for 4 h. The microstructures of the heat treated specimen showed that the Mg2Si phase with a size of 3~5 um was dispersed throughout the aluminum matrix when the heat treatment was done. Moreover, in order to identify the forgeability of the specimen, upsetting tests were done. For up to 80 % of the upsetting ratio, the specimen maintained its original shape, and at above 80 % of the upsetting ratio, the specimen underwent crack development. The specimen was successfully forged without any defects with the examined material conditions. The material conditions together with the forging conditions are discussed in terms of the microstructures and mechanical properties.
        4,000원
        1 2