검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) has excellent electrical insulation property, high thermal conductivity, and a low thermal expansion coefficient; therefore, it is widely used as a heat sink, heat-conductive filler, and heat dissipation substrate. However, it is well known that the AlN-based materials have disadvantages such as low sinterability and poor mechanical properties. In this study, the effects of addition of various amounts (1-6 wt.%) of sintering additives Y2O3 and Sm2O3 on the thermal and mechanical properties of AlN samples pressureless sintered at 1850oC in an N2 atmosphere for a holding time of 2 h are examined. All AlN samples exhibit relative densities of more than 97%. It showed that the higher thermal conductivity as the Y2O3 content increased than the Sm2O3 additive, whereas all AlN samples exhibited higher mechanical properties as Sm2O3 content increased. The formation of secondary phases by reaction of Y2O3, Sm2O3 with oxygen from AlN lattice influenced the thermal and mechanical properties of AlN samples due to the reaction of the oxygen contents in AlN lattice.
        4,000원
        2.
        2019.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) has versatile and intriguing properties, such as wide direct bandgap, high thermal conductivity, good thermal and chemical stability, and various functionalities. Due to these properties, AlN thin films have been applied in various fields. However, AlN thin films are usually deposited by high temperature processes like chemical vapor deposition. To further enlarge the application of AlN films, atomic layer deposition (ALD) has been studied as a method of AlN thin film deposition at low temperature. In this mini review paper, we summarize the results of recent studies on AlN film grown by thermal and plasma enhanced ALD in terms of processing temperature, precursor type, reactant gas, and plasma source. Thermal ALD can grow AlN thin films at a wafer temperature of 150~550 oC with alkyl/amine or chloride precursors. Due to the low reactivity with NH3 reactant gas, relatively high growth temperature and narrow window are reported. On the other hand, PEALD has an advantage of low temperature process, while crystallinity and defect level in the film are dependent on the plasma source. Lastly, we also introduce examples of application of ALD-grown AlN films in electronics.
        4,200원
        3.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of the content of MgO-CaO-Al2O3-SiO2 (MCAS) glass additives on the properties of AlN ceramics is investigated. Dilatometric analysis and isothermal sintering for AlN compacts with MCAS contents varying between 5 and 20 wt% are carried out at temperatures ranging up to 1600℃. The results showed that the shrinkage of the AlN specimens increases with increasing MCAS content, and that full densification can be obtained irrespective of the MCAS content. Moreover, properties of the AlN-MCAS specimens such as microhardness, thermal conductivity, dielectric constant, and dielectric loss are analyzed. Microhardness and thermal conductivity decrease with increasing MCAS content. An acceptable candidate for AlN application is obtained: an AlN-MCAS composite with a thermal conductivity over 70 W/m·K and a dielectric loss tangent (tan δ) below 0.6 × 10−3, with up to 10 wt% MCAS content.
        4,000원
        4.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, MgO–CaO–Al2O3–SiO2 (MCAS) nanocomposite glass powder having a mean particle size of 50 nm and a specific surface area of 40 m2/g is used as a sintering additive for AlN ceramics. Densification behaviors and thermal properties of AlN with 5 wt% MCAS nano-glass additive are investigated. Dilatometric analysis and isothermal sintering of AlN-5wt% MCAS compact demonstrates that the shrinkage of the AlN specimen increases significantly above 1,300oC via liquid phase sintering of MCAS additive, and complete densification could be achieved after sintering at 1,600oC, which is a reduction in sintering temperature by 200oC compared to conventional AlN-Y2O3 systems. The MCAS glass phase is satisfactorily distributed between AlN particles after sintering at 1,600oC, existing as an amorphous secondary phase. The AlN specimen attained a thermal conductivity of 82.6 W/m·K at 1,600oC.
        4,000원
        5.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, the use of an aluminum nitride(AlN) buffer layer has been actively studied for fabricating a high quality gallium nitride(GaN) template for high efficiency Light Emitting Diode(LED) production. We confirmed that AlN deposition after N2 plasma treatment of the substrate has a positive influence on GaN epitaxial growth. In this study, N2 plasma treatment was performed on a commercial patterned sapphire substrate by RF magnetron sputtering equipment. GaN was grown by metal organic chemical vapor deposition(MOCVD). The surface treated with N2 plasma was analyzed by x-ray photoelectron spectroscopy(XPS) to determine the binding energy. The XPS results indicated the surface was changed from Al2O3 to AlN and AlON, and we confirmed that the thickness of the pretreated layer was about 1 nm using high resolution transmission electron microscopy(HR-TEM). The AlN buffer layer deposited on the grown pretreated layer had lower crystallinity than the as-treated PSS. Therefore, the surface N2 plasma treatment on PSS resulted in a reduction in the crystallinity of the AlN buffer layer, which can improve the epitaxial growth quality of the GaN template.
        4,000원
        6.
        2011.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.
        4,000원
        7.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) powders were prepared by the chemical vapor synthesis (CVS) process in the system. Aluminum chloride () as the starting material was gasified in the heating chamber of . Aluminum chloride gas transported to the furnace in atmosphere at the gas flow rate of 200-400ml/min. For samples synthesized between 700 and , the XRD peaks corresponding to AlN were comparatively sharp and also showed an improvement of crystallinity with increasing the reaction temperature. In additions, the average particle size of the AlN powders decreased from 250 to 40 nm, as the reaction temperature increased.
        4,000원
        8.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) nanopowders with low degree of agglomeration and uniform particle size were synthesized by carbothermal reduction of alumina and subsequent direct nitridization. Boehmite powder was homogeneously admixed with carbon black nanopowders by ball milling. The powder mixture was treated under ammonia atmosphere to synthesize AlN powder at lour temperature. The effect of process variables such as boehmite/carbon black powder ratio, reaction temperature and reaction time on the synthesis of AlN nanopowder was investigated.
        4,000원
        9.
        2006.09 구독 인증기관·개인회원 무료
        Various reactions and the in-situ formation of new phases can occur during the mechanical alloying process. In the present study, Al powders were strengthened by AlN, using the in-situ processing technique during mechanical alloying. Differential thermal analysis and X-ray diffraction studies were carried out in order to examine the formation behavior of AlN. It was found that the precursors of AlN were formed in the Al powders and transformed to AlN at temperatures above . The hot extrusion process was utilized to consolidate the composite powders. The microstructure of the extrusions was examined by SEM and TEM. In order to investigate the mechanical properties of the extrusions, compression tests and hardness measurements were carried out. It was found that the mechanical properties and the thermal stability of the Al/AlN composites were significantly greater than those of conventional Al matrix composites.
        10.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to investigate the formation of AlN, mechanical alloying was carried out in and atmosphere. Differential thermal analysis (DTA), x-ray diffraction (XRD) and chemical analysis were carried out to examine the formation behavior of aluminum nitrides. No diffraction pattern of AlN was observed in XRD analysis of the as-milled powders in atmosphere. However, DTA and chemical analysis indicated that the precursors for AlN were formed in the Al powders milled in atmosphere. The AlN precursors transformed to AlN after heat treatment at and above . It was considered that the reaction between Al and was possible by the formation of fresh Al surface during mechanical alloying of Al powders.
        4,000원
        11.
        2004.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study for preparation of aluminum nitride (AlN) with high purity was carried out by self-propagating high-temperature synthesis method in two different systems, Al-N and Al-N-AlN, with the change of nitrogen gas pressure and dilution factor. On the occasion of Al-N system, unreacted aluminum was detected in the product in spite of high nitrogen pressure, 10 MPa, This may be caused by obstructing nitrogen gas flow to inner part of molten and agglomerate of aluminum, formed in pre-heating zone. In Al-N-AlN system, AlN with a purity of 95% or ever can be prepared in the condition of f 0.5, PN2 1 MPa, and the purity can be elevated to 98% over in the condition of f = 0.7 and PN2 = 10 MPa
        4,000원