검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 163

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The parking gear is very important part of automotive because it is related to safety. Nonlinear gear groove of parking gear is used to enlarge the contact area between parking gear and pawl. The die has been widely applied for many industrial parts such as machine, automotive and so on. The purpose of this study is to investigate the stability of upper and lower dies by using numerical analysis. As the results, the lower die was weaker than the upper die in this study, and the lower die showed that it should be used within 500ton in terms of safety factor. Further the most weak point of lower die was low location in front of gear. Its minimum value of safety factor was 0.578 in case of 4000ton of press load, therefore, this weak point was needed to be reinforced.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a numerical analysis study was conducted on the flow characteristics according to the internal flow path change and differential pressure of the hydrogen shut-off valve, and through this, the pressure loss characteristics and flow coefficient of the hydrogen shut-off valve were predicted. ANSYS CFX program was used to predict the flow characteristics of the hydrogen shut-off valve. When the flow path gap was 1.3 mm, the design conditions of the hydrogen shut-off valve were satisfied, and the value of the flow coefficient of the valve was about 1.53. As the inlet pressure of the hydrogen shut-off valve increases, the outlet flow rate increases, but regardless of the inlet pressure, the flow coefficient of the valve is almost constant, ranging from 1.53 to 1.56, indicating that it is the inherent flow coefficient of the designed hydrogen shut-off valve.
        4,000원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the case of a rear-wheel drive vehicle, a propeller shaft is installed to transmit the driving force of the engine. At this time, the propeller shaft is divided into 2 or 3 pipes, and the bearing is mounted on the vehicle body. And the end of the propeller shaft is connected to the rear differential and connected to the body through the chassis. Due to this complex structure, the propeller shaft must be highly balanced and the mounting angle must be well maintained. However, depending on the driving conditions of the car, various noise and vibration problems occur due to the aging of the parts and the propeller shaft. Hyundai Motor Company's maintenance center uses 'Noise Observer' to resolve various noise and vibration customer complaints. This paper describes the mechanism of vibration problems caused by unbalance of the propeller shaft and the diagnosis process using a 'Noise Observer'.
        4,000원
        4.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the automotive information display device industry, products with high reliability and wide temperature conditions are required, and interest in products that do not cause lighting defects even under extremely low temperature conditions is increasing. In this experiment, we produced an LED backlight unit for car navigation in a cryogenic environment. And to make this backlight unit, we used 12 side-emitting white LEDs with 3[W] high power LEDs. This backlight unit emits up to 18,000[nits] at a power consumption of 36[W] and has a startup voltage time of less than 1[ms] at -50° ambient temperature.
        3,000원
        5.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, In this study, structural analysis of a fuel tank for an SUV (sports utility vehicle) was performed for crack prevention design. Reservoir tank analysis was conducted for crack prevention design, and improvement measures for weak areas were discovered and reflected in the design. Pressure analysis was performed on the existing model to analyze weak areas. As a result of analysis through various design changes, it was found that the strength problem of the reservoir tank was due to the discontinuity of the rib inside the tank, and to improve this, it was necessary to minimize the discontinuity section.
        4,000원
        6.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, as ESG management has become an important issue, major companies in the automotive parts manufacturing industry are conducting ESG evaluations of their suppliers for the purpose of supply chain management. The results of these evaluations are being incorporated into contractual agreements. However, many small and medium-sized enterprises(SMEs) are lacking in their capacity and resources to effectively respond to ESG evaluations. Furthermore, existing ESG management guidelines do not provide an industry-specific guidance, making it necessary to establish industry-specific guidelines that SMEs can refer to. Therefore, in this study, the evaluation Indicators of ESG supply chain assessments are surveyed, which is conducted by domestic major automotive parts companies and global automobile manufacturers. Then 56 supply chain ESG evaluation Indicators are derived. Also, ESG management indicators for SMEs is analyzed through the Importance-Performance Analysis(IPA), based on an interview of expert groups. Therefore, this study could propose industry-specific ESG guidelines, based on the results of the derived indicators, which reflects the need for SMEs to practice ESG management within certain boundaries.
        4,300원
        7.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the design of fuel tanks for SUVs (sports utility vehicles) was dealt with through structural analysis. Fuel tank analysis was performed to evaluate safety, and improvement plans for weak areas were found and reflected in the design. In addition, strength analysis and pressure analysis were performed in parallel to solve the problem of oil leakage around the lower part of the fuel tank and the rear mounting that occurred during the endurance test, and the analysis results were reflected in the design. As a result of analysis through various design changes, it was possible to present an appropriate reinforcement flange shape. In addition, when the thickness of the fuel tank was changed from 1.0mm to 0.8mm, the stiffness of the fuel tank decreased by approximately 30%, and reinforcement was required.
        4,000원
        8.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study was to quantitatively evaluate the variability of LiDAR performance indicators, such as intensity and Number of Point Cloud(NPC), according to various environmental factors and material characteristics. METHODS : To consider the material characteristics of road safety facilities, various materials (Reference Material(RM), reflective sheet, matte sheet, granite, plastic, and rubber) were used in a darkroom, and the performance indicators of LiDAR were repeatedly measured in terms of changes in the measurement distance, rainfall, and angle of observation. RESULTS : In the case of standard reflective materials, the intensity measurement value decreased as the measurement distance and rainfall increased. The NPC showed a tendency to decrease as the measurement distance increased, regardless of rainfall intensity. For materials with high-intensity values, it was found that rainfall intensity and color had negligible effect on the change in intensity compared with the measurement distance. However, for materials with low-intensity values, it was found that the measurement distance, rainfall intensity, and color all had a significant effect on the change in intensity. CONCLUSIONS : For materials with high-intensity values, it was found that rainfall and color had negligible effect on change in intensity compared with the measurement distance. However, for materials with low-intensity values, the measurement distance, rainfall, and color all had a significant effect on the change in intensity value.
        4,000원
        9.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The sub-frame is located on the lower body of a monocoque type vehicle and serves as an engine and suspension, and is an important object part that receives a lot of load. The existing press-type sub-frame has a large number of parts for assembling, which causes an increase in cost. Changing the machining form of this part from the existing press-type machining method to the hydro-forming machining method has the advantage of reducing the cost and weight at the same time due to the reduction of the process. Therefore, in this study, the purpose of this study is to change the design so that the sub-frame of the existing press type can be changed to the hydro-forming process method. To this end, we intend to present a design method by analyzing the effect on the rigidity of the sub-frame using the existing machining method through shape optimization analysis.
        4,000원
        10.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydro-forming technology is a technology that will replace the existing press-forming technology and is used in various industry range from automotive parts to electronic products. The advantage of this technology is that it has dramatically changed the existing processing method, and it can be said that the process reduction due to the reduction of parts, cost reduction, and high precision are mentioned. In this study, it is intended to present a design process using computer simulation by changing the sub-frame for automotive parts produced with the existing press forming technology to the hide-forming method. To this end, it is intended to use it as part design data by comparatively analyzing the cross-sectional shape and thickness reduction, which are the major factors necessary to determine the successful development of the developed parts.
        4,000원
        12.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The introduction of autonomous underwater gliders (AUGs) specifically addresses the reduction of operational costs that were previously prohibited with conventional autonomous underwater vehicles (AUVs) using a "scaling-down" design philosophy by utilizing the characteristics of autonomous drifters to far extend operation duration and coverage. Long-duration, wide-area missions raise the cost and complexity of in-water testing for novel approaches to autonomous mission planning. As a result, a simulator that supports the rapid design, development, and testing of autonomy solutions across a wide range using software-in-the-loop simulation at faster-than-real-time speeds becomes critical. This paper describes a faster-than-real-time AUG simulator that can support high-resolution bathymetry for a wide variety of ocean environments, including ocean currents, various sensors, and vehicle dynamics. On top of the de facto standard ROS-Gazebo framework and open-sourced underwater vehicle simulation packages, features specific to AUGs for ocean mapping are developed. For vehicle dynamics, the next-generation hybrid autonomous underwater gliders (Hybrid-AUGs) operate with both the buoyancy engine and the thrusters to improve navigation for bathymetry mappings, e.g., line trajectory, are is implemented since because it can also describe conventional AUGs without the thrusters. The simulation results are validated with experiments while operating at 120 times faster than the real-time.
        4,000원
        13.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, stiffness evaluation was conducted on the main member, front cross member, and rear cross member, which are three components of sub-frame for SUVs (sports utility vehicles), through mode analysis. As for the design variables used in the analysis, the maximum frequency was examined by varying the width and height of each of the three parts into four types. Of course, the weight at this time is minimized, and the mode is set as a constraint that only bending occurs and no distortion occurs. As a result of the analysis, the member affecting the 1st mode was the rear cross member, and the member having the greatest influence on the 2nd mode was the front cross member. In addition, the member with the greatest influence on the 3rd mode appeared as the rear cross member, indicating that this part had the greatest effect on the bending stiffness.
        4,000원
        14.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 oC for 6 h, followed by water cooling, and samples were artificially aged in air at 180 oC and 220 oC for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 oC and above 300 oC, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 oC and 400 oC, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 oC and 400 oC was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.
        4,000원
        15.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Parking gear is essential parts of automotive to park on flat or slope ground. Parking of, especially, big-sized vehicle such as bus and truck is very important problem related to safety. Stability of parking gear may differ from contact location between parking gear and pawl. The purpose of this study is to investigate the influence of stability depending on contact location using numerical analysis. Furthermore the results obtained by numerical analysis were applied to real vehicles to evaluate established-product of parking gear. As the results, safety criterion of parking gear showed below 0.31ton and thus it was confirmed that parking gear of this study was suitable to small-sized vehicle.
        4,000원
        16.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study wanted to optimize the radiator tank's deformation assembled on the automotive engine block. Among the experimental planning methods, the Taguchi method was used to find optimal molding conditions to minimize plastic covers' deformation. The four main factors used in the Taguchi method were selected as the main factors: resin temperature, pressure time, coolant temperature, and cooling time. The number of cycles for each factor was divided into five stages, and a total of 25 experiments were conducted. The experiment used the Moldflow program, an injection molding analysis program. The maximum deformation obtained under the existing molding conditions was about 1.318mm. Still, the deformation of the mold applied with the optimal molding conditions obtained using the Taguchi method was approximately 1.273mm, which showed that the maximum deformation was reduced by 3.4% compared to the existing molding conditions.
        4,000원
        17.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study is to identify the emission characteristics of VOCs from small-scale painting facilities, such emissions being pollutants that impact nearby living areas and to devise improvement measures to enhance management plans regarding pollutant emissions from painting facilities. VOCs emissions from painting facilities were estimated according to Clean Air Policy Support System (CAPSS) data based on the National Institute of Environmental Research (NIER)'s emission list in 2017. Three automotive painting facilities in Seoul were chosen for evaluation of the adsorption system. We analyzed the characteristics of VOCs generated by type of different operation and measured the removal efficiency of the adsorption system. Therefore, we analyzed current emissions of VOCs from automotive painting facilities based on field measurements. According to such detailed analysis, a systematic management plan was proposed.
        4,300원
        18.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the flow analyses were carried out on three kinds of front wing models. The down forces of front wings which influence the stability, cornering at driving were investigated with three models. At model 1, the maximum pressure shown on the main plate of front wing is 3177.539Pa. The maximum pressures at models 2 and 3 are shown to be 3429.677Pa and 3506.494Pa, respectively. The higher the pressure, the more resistance. So, the lower the pressure, the less resistance the model gets. At model 1, the maximum velocity of stream that flows under the front wing was shown to be the smallest among three models. In case of all three models, the pressure at which the air passes through the front wing is high in the upper part of the front wing. Among three models, model 1 is thought to be the most appropriate model to give the effect of the down force while reducing the flow resistance at driving. By utilizing this study result, the flow velocity and pressure are investigated without the flow experiment at driving due to the configuration of automotive front wing, and the flow resistance can be seen.
        4,000원
        19.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        초록 close In this study, the structural analyses were carried out with the old and new wheel models installed at the automotive tires. The stress and deformation at the middle circumference of wheel were seen to be greatest at two models. Also, the stress and deformation were smallest at the edge of wheel. The maximum deformation of the old model B is about five times larger than that of the new model A. The maximum equivalent stress of the old model B can be seen to be twice as large as the new model A. Also, it can be seen that the new model A is more stable than the old model B in terms of strength. It can be seen that the deformation energy of the old model B is 19 times larger than that of the new model A. And it is thought that the new model A is much more durable than the old model B in terms of impact. By utilizing this study result, the stress and deformation are investigated without the strength test of wheel installed at the automotive tire, and the durability can be seen.
        4,000원
        1 2 3 4 5