Although the proportion of coal-fired power generation is decreasing, efficient operating technology is needed to continuously invest in facilities and reduce maintenance costs until it is abolished. Boilers, one of the main facilities of power plants, operate for a long time in harsh environments of high temperature and high pressure. In addition, damage due to deterioration is likely to occur depending on the fuel and tube material used. It is very important to judge soundness because damage caused by deterioration adversely affects facility operation. Previously, replication method was used to analyze the progress of deterioration. In the replication method, pre-treatment such as chemical treatment is performed on the boiler tube in the field, the area is reproduced by attaching a film, and the replicated film is determined by an expert in the laboratory with an expensive microscope. However, this method involves substantial costs and time requirements, as well as the possibility of human errors. To address these issues, we developed a mobile health assessment system in this research. Since it is detachable and takes images in real time, this system enables swift evaluations across a broad range and facilitates the assessment of preprocessing quality. In addition, it was intended to reduce existing human mistakes by developing a degradation classification algorithm using the merger cluster method.
In order to effectively utilize thermal energy, we analyzed the performance of the high efficiency latent heat storage system which can be used for greenhouse heating by using the developed phase change material. The system consists of hot water boiler, heat storage material, heat storage box, heat storage tank, circulation pump, control panel, and storage material. As a result, the latent heat and latent heat temperature of sodium acetate hydrate as latent heat storage material are 231.6 ~ 264.8kJ/kg, 54.95 ~ 55.48℃. As the number of cooling and heating increased, the latent heat temperature showed a slight change, but the latent heat decreased 33.1kJ/kg as the number of repetition increased. In the case of sodium acetate hydrate, large supercooling phenomenon was observed, and it was found that mixing of additives such as nucleating agent, thickener and supercooling agent can control the supercooling more effectively. The consumption of kerosene decreased until the temperature of the heat storage tank was raised to the set temperature by the closed circuit for 4 hours in the initial stage of the boiler operation. The heat exchange rate according to the change of the flow rate was maintained at the set temperature inside the heat storage tank after 4 hours of operation, Consumption was high. As the flow rate increased, the inlet and outlet temperature difference decreased, the heat exchange rate increased, and the heat exchange efficiency was in the range of 57.4 ~ 60.5%.
An electric steam boiler equipped with a condensate recovery system, which stores the condensate generated after using steam in steam washers, steam cookers, steam irons, and steam cleaners in a condensate tank and supplies compressed air to the condensate tank so that the condensate is recovered to the boiler by the pressure of the compressed air, was studied. In the results of this study, the heat energy balance between the quantity of the heat generated by the non-metallic surface heating element and the quantity of the heat absorbed by the water was good in a range of ±5%. In addition, the heat transfer rate increased in proportion to the electric power of the surface heating element heater, the waste heat energy was normally recovered by the recovery of the condensate of the steam boiler equipped with the high compression waste heat recovery system, and the recovery rate of the waste heat exhibited 23%.
Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 ℃ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.
By the end of 2012, the recycled proportion of domestic waste tires was 287,330 ton (93.9%) of the amount of waste tires discharged (305,877 ton). The waste tires have been reused for heat supply, material recycling and other purposes; the proportions are 50.1%, 20.7% and 23.1%, respectively. In the case of heat supply, waste tires are supplied to cement kiln (104,105 ton, 68%), RDF manufacture facilities (47,530 ton, 31%) and incinerators (1,923 ton, 1%). Recently, there has been an increase in the use of waste tires at power generation facilities as an auxiliary fuel. Thus, physico-chemical analysis, such as proximate analysis, elemental analysis and calorific value analysis have been carried out to evaluate potential of waste tires as an auxiliary fuel in Korea. The LHV (Lower Heating Value) of waste tires is approximately 20% higher than that of coal, at an average of 8,489 kcal/kg (7,684 ~ 10,040 kcal/kg). Meanwhile, the sulfur content is approximately 1.5wt. %, and balance of plant (e.g. pipe line, boiler tube, etc.) may be corroded by the sulfur. However, this can be prevented by construction and supplementation with refractories. In this study, TDF (Tire Derived Fuel) produced from waste tires was co-combusted with coal, and applied to the CFB (Circulating Fluidized Bed) boiler, a commercial plant of 100 tons/day in Korea. It was combined with coal, ranging from 0 to 20wt. %. In order to determine the effect on human health and the environment, gas emission such as dioxin, NOx, SOx and so on, were continuously analyzed and monitored as well as the oxygen and carbon monoxide levels to check operational issues.
보일러 시스템에서의 부식 현상은 다양한 산업 분야에서 중대한 문제 중 하나로 인식되어왔다. 부식에 주된 원인으로는 높은 온도와 염소 가스와 같은 부식을 촉진시키는 특정한 가스인자들을 꼽을 수 있다. 많은 연구자들은 부식 현상을 억제하기 위한 재료 개발과 방법들에 대해 주목해서 연구해왔지만 각각의 내부식방법들을 비교 분석한 연구 사례는 흔치 않다. 이번 연구에서 우리는 보일러 시스템 고유의 온도 및 가스 조건을 구현할 수 있는 장치를 고안하여 각각의 내부식 방법들을 평가해보았다. 대부분의 보일러 시스템에서는 보일러 관의 외부(~800℃)와 내부(~500℃)가 내부의 스팀생성으로 인해 온도가 다르게 구현되는 독특한 특징이 있다. 우리가 새롭게 고안된 장치를 이용하면 내부식 방법들(ceramic coating, silica taping, plasma coating, high velocity oxygen fuel coating and overlay Inconel welding)에 대한 평가뿐만 아니라 부식을 유발시키는 염소 가스에 대한 영향도 구분해서 분석할 수 있다. 본 연구를 통해 보일러 튜브 표면에서 발생하는 고온 부식의 메커니즘에 대한 분석 및 고찰을 비롯해 각각의 내부식 방법들에 대한 보일러 튜브의 수명연장효과(잔여 수명 분석)을 FE-SEM, EDS, 무게감량법들을 통해 비교・평가할 수 있었다.