검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 287

        101.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the detection characteristics of nitrogen monoxide(NO) gas using p-type copper oxide(CuO) thin film gas sensors. The CuO thin films were fabricated on glass substrates by a sol-gel spin coating method using copper acetate hydrate and diethanolamine as precursors. Structural characterizations revealed that we prepared the pure CuO thin films having a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the NO gas sensin measurements that the p-type CuO thin film gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as 100 oC. Additionally, these CuO thin film gas sensors were found to show reversible and reliable electrical response to NO gas in a range of operating temperatures from 60 oC to 200 oC. It is supposed from these results that the ptype oxide semiconductor CuO thin film could have significant potential for use in future gas sensors and other oxide electronics applications using oxide p-n heterojunction structures.
        4,000원
        102.
        2015.04 구독 인증기관·개인회원 무료
        Behavioral response is commonly affected by heavy metal toxicity, and behavioral reaction can be measured as sensitive endpoint for sublethal toxicity test and obtained easily and quickly. Also behavioral endpoints may serve as an insightful evaluation tool of the ecological effects of toxic chemicals. In this study, Heterocypris incongruens (Crustacea: Ostracoda) was selected, which is usually used as an indicater species for water quality. H. incongruens was exposed to copper and arsenic for 5 minute and total distance, velocity, turn angle, and angle velocity were measured for 30 minute using video analysis system in laboratory condition. Each endpoints reflected the effects of copper and Arsenic toxicity appropriately. These endpoint have possibility that can be used to identify characteristic behavioral responses to metal toxicity.
        103.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Copper is an essential micronutrient whose deficiency is often seen to occur in humans. Although many biomedical studies have focused on the use of nanoparticles, the nutritional effects of nano-sized copper oxide particles are not well known. This aim of this study was to investigate the nutritional bioavailability of nano- and micro-sized copper oxide (CuO) particles in copper-deficient (CuD) mice. Copper deficiency was induced in mice by feeding a CuD diet (0.93 mg Cu/kg diet) for 7 weeks. After the induction of copper deficiency, nano- or micro-sized copper oxide particles were administered orally at two different doses (0.8 and 4.0 mg CuO/kg body weight) to mice in the following groups: (1) normal control (NC), (2) CuD, (3) low dose micro-sized CuO, (4) high dose micro-sized CuO, (5) low dose nano-sized CuO, and (6) high dose nano-sized CuO. The hepatic copper concentration in the CuD group was significantly lower than that in the NC group. Compared to the NC group, the CuD group exhibited lower serum ceruloplasmin (CP) activity and CP level. The copper/zinc-superoxide dismutase activity in the CuD group was significantly lower than that in the NC group. Treatment with nano- or micro-sized copper oxide particles for 2 weeks restored the hepatic copper levels and serum CP activities to values similar to those observed in the NC group. The CP levels and copper/zinc-superoxide dismutase activities in all the copper oxide treatment groups also recovered to normal values after 3 weeks of copper oxide treatment. These results show that oral administration of either nano- or micro-sized copper oxide particles for 2–3 weeks restored the normal condition in previously CuD mice.
        4,300원
        104.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the behavior of densification of copper powders during high-pressure torsion (HPT) at room temperature is investigated using the finite element method. The simulation results show that the center of the workpiece is the first to reach the true density of copper during the compressive stage because the pressure is higher at the center than the periphery. Subsequently, whole workpiece reaches true density after compression due to the high pressure. In addition, the effective strain is increased along the radius during torsional stage. After one rotation, the periphery shows that the effective strain is increased up to 25, which is extensive deformation. These high pressure and severe strain do not only play a key role in consolidation of copper powders but also make the matrix harder by grain refinement.
        3,000원
        105.
        2014.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural evolution in the thickness direction of an oxygen free copper processed by accumulative rollbonding (ARB) is investigated by electron back scatter diffraction (EBSD) measurement. For the ARB, two copper alloy sheets 1 mm thick, 30 mm wide and 300 mm long are first degreased and wire-brushed for sound bonding. The sheets are then stacked and roll-bonded by about 50% reduction rolling without lubrication at an ambient temperature. The bonded sheet is then cut to the two pieces of the same dimensions and the same procedure was repeated on the sheets up to eight cycles. The specimen after 1 cycle showed inhomogeneous microstructure in the thickness direction so that the grains near the surface were finer than those near the center. This inhomogeneity decreased with an increasing number of ARB cycles, and the grain sizes of the specimens after 3 cycles were almost identical. In addition, the aspect ratio of the grains decreased with an increasing number of ARB cycles due to the subdivision of the grains by shear deformation. The fraction of grains with high angle grain boundaries also increased with continuing process of the ARB so that it was higher than that of the low angle grain boundaries in specimens after 3 cycles. A discontinuous dynamic recrystallization occurred partially in specimens after 5 cycles.
        4,000원
        106.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A powder-in-sheath rolling (PSR) process utilizing a copper alloy tube was applied to a fabrication of a multi-walled carbon nanotube (CNT) reinforced aluminum matrix composite. A copper tube with an outer diameter of 30 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol% was filled in the tube by tap filling and then processed to 93.3% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the PSR decreased slightly with increasing of CNTs content, but showed high value more than 98%. The average hardness of the 5%CNT/Al composite increased more than 3 times, compared to that of unreinforced pure Al powder compaction. The hardness of the CNT/Al composites was some higher than that of the composites fabricated by PSR using SUS304 tube. Therefore, it is concluded that the type of tube affects largely on the mechanical properties of the CNT/Al composites in the PSR process.
        4,000원
        107.
        2014.10 구독 인증기관·개인회원 무료
        Understanding how species will respond to projected future climate change has become important. However, the impacts of climate change on the ecosystem are very complex and uncertain, we need a reliable tool for approaching it. Mechanistic modeling can be one of the solution for handling the various factors and responses of test organisms in regard to climate change. We introduce the case study on the copper toxicity on D. magna and show the applicability of these mechanistic model approaches. The overall objective of this case study was to simulate the chronic toxicity of copper on Daphnia magna using dynamic energy budget theory with the improved toxicity module component. The toxicity module includes toxic effects on allocation of reserve, structure, and maturity energy in the D. magna. Model calibration and verification were performed using data sets obtained from a laboratory experiment that include growth, maturity and survival measurement data of D. magna during copper exposure. The simulation results show that the response of D. magna under copper exposure was well estimated by toxicity module. Overall, the results show the dynamics model based on DEB theory can be used for estimating long-term metal toxicity on D. magna. Thus, mechanistic modeling can be utilized as a approach tool for evaluating the impacts of climate change on the ecosystem with more mechanistic description.
        108.
        2014.10 구독 인증기관·개인회원 무료
        Behavioral reaction can be measured as a sensitive endpoint for sublethal toxicity of copper, and can be used to obtain easily and quickly. Also behavioral endpoints may serve as a more insightful evaluation tool of the ecological effects of toxic chemicals. In this study, four invertebrates in freshwater which are usually used indicate species for water quality were selected as test species (Chironomus riparius, Heterocypris incongruens, Daphnia magna, and, Triops longicaudatus). Each test species was exposed to copper for 6 hours, and total distance, velocity, and, turn angle were measured for 1 hour using video analysis system (Ethovision : Noldus Information Technology) in laboratory condition. Each endpoints reflected effect of copper toxicity appropriately for all test species. These endpoint have possibility that can be used to identify characteristic behavioral responses to a metal toxicity. We viewed this study as a preliminary experiment for future research to investigate the significance of behavioral endpoints to various toxic chemicals.
        109.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using alkali treatment solution, neutrality treatment solution and acid treatment solution, the surface corrosion layer of copper plates and bronze plates that have been artificially corroded using HCl, H2SO4 and HNO3 solutions were removed. In the case of alkali treatment solution, only air oxidation in the form of black tenorite and white cuproous chloride remained without being removed. In the case of using a neutrality treatment solution, a anhydrous type layer of reddish brown cupric chloride remained without being removed, together with this black and white corrosion substance. In the case of using an acid treatment solution, this red corrosion substance also remained, but all of the oxide was removed on the surface of the specimen that was treated by alternatively using alkali treatment solution and acid treatment solution. In the case of this treatment solution with the order of alkali-acid, oxidation no longer proceeded only through the distilled water cleaning process after treatment, thereby showing that oxidation from the cleaning solution no longer proceeded.
        4,000원
        110.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relativelyhigh temperature of 350℃ in order to eliminate surface oxide layers, which are the main obstacles for fabricating anano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure beforeand after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patternsusing the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD lineprofile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduc-tion treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as thebasis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of theparticles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results dem-onstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders isachieved.
        4,000원
        111.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wavegenerated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the cap-sule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with analuminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were ana-lyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness resultsshowed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained com-mercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEMalso confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygenlayer of the powders.
        4,000원
        112.
        2013.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To understand how reactivity between reinforcing nanoparticles and aqueous solution affects electrodeposited Cu thin films, two types of commercialized cerium oxide (ceria, CeO2) nanoparticles were used with copper sulfate electrolyte to form in-situ nanocomposite films. During this process, we observed variation in colors and pH of the electrolyte depending on the manufacturer. Ceria aqueous solution and nickel sulfate (NiSO4) aqueous solutions were also used for comparison. We checked several parameters which could be key factors contributing to the changes, such as the oxidation number of Cu, chemical impurities of ceria nanoparticles, and so on. Oxidation number was checked by salt formation by chemical reaction between CuSO4 solution and sodium hydroxide (NaOH) solution. We observed that the color changed when H2SO4 was added to the CuSO4 solution. The same effect was obtained when H2SO4 was mixed with ceria solution; the color of ceria solution changed from white to yellow. However, the color of NiSO4 solution did not show any significant changes. We did observe slight changes in the pH of the solutions in this study. We did not obtain firm evidence to explain the changes observed in this study, but changes in the color of the electrolyte might be caused by interaction of Cu ion and the by-product of ceria. The mechanical properties of the films were examined by nanoindentation, and reaction between ceria and electrolyte presumably affect the mechanical properties of electrodeposited copper films. We also examined their crystal structures and optical properties by X-ray diffraction (XRD) and UV-Vis spectroscopy.
        4,000원
        113.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the synthesis of nickel nanoparticles and copper nanospheres for the potential applications of MLCC electrode materials has been studied by plasma arc evaporation method. The change in the broad distribution of the size of nickel and copper nanopowders is successfully controlled by manifesting proper mixture of gas ambiance for plasma generation in the size range of 20 to 200 nm in diameter. The factors affecting the mean diameter of the nanopowder was studied by changing the composition of reactive gases, indicating that nitrogen enhances the formation of larger particles compared to hydrogen gas. The morphologies and particle sizes of the metal nanoparticles were observed by SEM, and ultrathin oxide layers on the powder surface generated during passivation step have been confirmed using TEM. The metallic FCC structure of the nanoparticles was confirmed using powder X-ray diffraction method.
        4,600원
        114.
        2013.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated the characteristics of electroless plated Cu films on screen printed Ag/Anodized Al substrate. Cu plating was attempted using neutral electroless plating processes to minimize damage of the anodized Al substrate; this method used sodium hypophosphite instead of formaldehyde as a reducing agent. The basic electroless solution consisted of CuSO4·5H2O as the main metal source, NaH2PO2·H2O as the reducing agent, C6H5Na3O7·2H2O and NH4Cl as the complex agents, and NiSO4·6H2O as the catalyser for the oxidation of the reducing agent, dissolved in deionized water. The pH of the Cu plating solutions was adjusted using NH4OH. According to the variation of pH in the range of 6.5~8, the electroless plated Cu films were coated on screen printed Ag pattern/anodized Al/Al at 70˚C. We investigated the surface morphology change of the Cu films using FE-SEM (Field Emission Scanning Electron Microscopy). The chemical composition of the Cu film was determined using XPS (X-ray Photoelectron Spectroscopy). The crystal structures of the Cu films were investigated using XRD (X-ray Diffraction). Using electroless plating at pH 7, the structures of the plated Cu-rich films were typical fcc-Cu; however, a slight Ni component was co-deposited. Finally, we found that the formation of Cu film plated selectively on PCB without any lithography is possible using a neutral electroless plating process.
        4,000원
        115.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The conductive polymer composites recently became increasingly to many fields of industry due to their electrical properties. To understand these properties of composites, electrical properties were measured and were studied relatively. Electrical conductivity measurements showed percolation phenomena. Percolation theories are frequently applied to describe the insulator-to-conductor transitions in composites made of a conductive filler and an insulating matrix. It has been showed both experimentally and theoretically that the percolation threshold strongly depends on the aspect ratio of filler particles. The critical concentration of percolation formed is defined as the percolation threshold. This paper was to study epoxy resin filled with copper. The experiment was made with vehicle such as epoxy resin replenished with copper powder and the study about their practical use was performed in order to apply to electric and electronic industry as well as general field. The volume specific resistance of epoxy resin composites was 3.065~13.325 in using copper powder. The weight loss of conductive composites happened from 350℃~470℃.
        4,000원
        116.
        2013.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to investigate the coloration characteristics by identifying the factor affecting redcoloration of copper red glaze in traditional Korean ceramics. This study analyzed the characteristics of the reduction-firedcopper red glaze by using XRD, Raman spectroscopy, EDX and UV-vis spectroscopy. As a result of XRD analysis, the glazecompletely melted and amorphous glass appeared overall, and the characteristic peak of metal Cu was shown together. Inaddition, as a result of Raman analysis, the characteristic bands of CuO and Cu2O were shown together. The distribution ofcomponent elements was observed by EDX. As a result, copper(Cu) were distributed throughout the glaze. Thus, it was shownthat copper red glaze appeared the best red coloration because metal Cu, CuO and Cu2O evenly existed throughout glaze inparticle colloidal state. The chroma value of the copper red glaze was CIE L* 30.07, a* 13.65, b* 3.72. Wine-Red Solutionwas shown by Dark Graish Red coloration.
        4,000원
        117.
        2013.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A two-pass differential speed rolling(DSR) was applied to a deoxidized low-phosphorous copper alloy sheet in order to form a homogeneous microstructure. Copper alloy with a thickness of 3 mm was rolled to 75 % reduction by two-pass rolling at 150˚C without lubrication at a differential speed ratio of 2.0:1. In order to introduce uniform shear strain into the copper alloy sheet, the second rolling was performed after turning the sample by 180˚ on the transverse direction axis. Conventional rolling(CR), in which the rotating speeds of the upper roll and lower roll are identical to each other, was also performed by two-pass rolling under a total rolling reduction of 75 %, for comparison. The shear strain introduced by the conventional rolling showed positive values at positions of the upper roll side and negative values at positions of the lower roll side. However, samples processed by the DSR showed zero or positive values at all positions. 100//ND texture was primarily developed near the surface and center of thickness for the CR, while 110//ND texture was primarily developed for the DSR. The difference in misorientation distribution of grain boundary between the upper roll side surface and center regions was very small in the CR, while it was large in the DSR. The grain size was smallest in the upper roll side region for both the CR and the DSR. The hardness showed homogeneous distribution in the thickness direction in both CR and DSR. The average hardness was larger in CR than in DSR.
        4,000원
        120.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 인쇄회로기판(PCB) 제조 시 에칭공정에서 발생되는 구리이온(Cu+2)을 고농도로 함유한 황산 폐에칭액을 NF 막분리법을 사용하여 에칭액 회수와 구리이온 처리를 효율적으로 수행하기 위한 NF 막여과 공정의 운전 조건을 설정하기 위한 기본 자료를 확보하는데 있다. 이를 위해 미국 Koch사의 SelRO MPS-34 4040 NF 막을 대상으로 구리이온을 고농도(5~25 g/L)로 함유한 모의 황산 폐에칭액의 회분식(dead-end) 나노여과 실험을 수행하여 투과 플럭스와 구리이온의 총괄 배제도를 측정하였다. 이 결과 황산용액에의 막 보관기간이 길수록, 황산용액의 pH가 낮을수록 황산에 의한 NF 막의 손상이 더 크게 발생하여 순수 투과 플러스가 증가하였다. 황산 폐에칭액의 투과 플럭스는 황산용액 내 구리이온의 농도가 증가할수록 막 표면에의 구리이온 농축(농도분극)의 증가에 따라 감소하였으며, 구리이온의 배제도는 구리이온의 농도가 높을수록, pH가 낮을수록, 황산용액 내의 막 보관기간이 길수록 낮아져 초기 37%에서 최소 15% 수준으로까지 감소하였다.
        4,000원