검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Safe radiation management is essential not only for operational nuclear power plants but also for nuclear plants to be decommissioned. When spent nuclear fuel is present on-site, meticulous radiation emergency plans are necessary to ensure safety. In Korea, numerous radiation emergency plans have been established for operational nuclear reactors. These plans delineate distinct response mitigation measures for white, blue, and red emergencies. However, clear regulations are yet to be devised for radiation emergency plans for reactors to be decommission. Therefore, this study investigated the decommissioning plan and status of Kori unit 1 to comprehensively analyze the current status of decommissioning safety in Korea. In this study, radiation emergency plans of decommissioning nuclear power plants abroad were reviewed to confirm radiation emergency action levels. Furthermore, radioactive waste treatment facilities, to be used for decommissioning reactors in Korea were evaluated. Moreover, the study assessed emergency plans (especially, emergency initiating conditions) for operational nuclear power plants in Korea for potential use in the decommissioning phase. This study proposed an emergency initiating condition that can be used for decommissioning reactors in Korea. Considering the anticipated introduction of plasma torch melting facility in Korea, this study examined the conditions of radiation emergency plans can be altered. This study identified effective measures and guidelines for managing radiological emergency initiating conditions, and effective decommissioning of nuclear power plants in Korea.
        4,600원
        2.
        2023.11 구독 인증기관·개인회원 무료
        According to IAEA GSR Part.6, Decommissioning is carried out on the basis of planning and evaluation to ensure safety, protection of workers, public, and environment. Then, the decommissioning project of nuclear facility includes a radiation protection plan that reflects the regulatory requirements and international recommendations of each country and the internal regulations of the licensee. The scope of the radiation protection plan covers all radiation activities related to the dismantling and disposal of contaminated facilities subject to decommissioning. Radiation protection applications in the United States, a country with previous experience in decommissioning nuclear facilities, include 10 CFR 20 for NRC management facilities and 10 CFR 835 for facilities under DOE. In this study, we analyzed two cases of decommissioning plans to which NRC regulations are applied. In 1992, Yankee Atomic Electric Company (YAEC), the licensee of Yankee Nuclear Power Station (YNPS), notified NRC of the permanent shutdown of YNPS and submitted decommissioning plan accordingly. This decommissioning plan consists of a total of 9 chapters, and section 3.2 describes the radiation protection of decommissioning workers. The contents of the radiation protection program consist of 16 subsections. Another case is the decommissioning work plan of U.S. Navy Surface Ship Support Barge (SSSB), which used in Virginia to support the refueling of the U.S. Navy’s reactor vessel. This document was developed based on the NUREG-1757 and was revised in 2021 after receiving NRC comment. SSSB’s project radiation protection plan is described in appendix 1, and the contents consist of a total of 28 sections except for reference. In Korea, decommissioning plan is developed in accordance with “Standard Format and Content of the Decommissioning Plan for Nuclear Facilities”. According to this regulation, the radiation protection plan for licensing documents submitted at the time of application for approval of decommissioning execution shall describe the organization and functions for implementing of plan, methods, cycles and procedures for performing radiation protection and radiological monitoring. Also, the safety review guidelines of regulatory body also require radiation protection plans and procedures to ensure ALARA activities during decommissioning. In the case of the final decommissioning plan of Kori-1, which is currently submitted to regulatory body for licensing review, the decommissioning radiation protection plan is divided into 8 sections. Although the classification criteria for the radiation protection plan categories described above facilities are different, it could be seen that the following 7 contents are included in common: (a) ALARA application and organization for implementation, (b) Management of radiation control area, (c) Process of radiation work, (d) Radiation and contamination control, (e) Personnel radiation exposure monitoring, (f) Radioactive material management, (g) Radiation protection training.
        3.
        2023.11 구독 인증기관·개인회원 무료
        Wolsong Unit 1, a domestic heavy water reactor nuclear power plant, was permanently shut down in December 2019. Accordingly, Wolsong Unit 1 plans to prepare a Final Decommissioning Plan (FDP), submit it to the government by 2024, receive approval for decommissioning, and begin full-scale decommissioning. One of the important tasks in the decommissioning of Wolsong Unit 1 is to determine the decommissioning strategy. It is necessary to decide on a decommissioning strategy considering various factors and variables, secure the technical background, and justify it. The selection of a decommissioning strategy is best achieved through the use of formal decisionmaking assistance techniques, such as considerations related to influencing factors. It is very important to understand the basic decommissioning strategy alternatives and whether sufficient consideration has been given to situations where only a single unit is permanently shut down in a multi-unit site like Wolsong Unit 1, while the remaining units are in normal operation. As a process for selecting a decommissioning strategy, first, all considerations that could potentially affect decommissioning presented in the KINS Decommissioning Safety Review Guidelines were synthesized, influencing factors to be used in the decision-making process were determined, and the concept was defined. In order to select the most appropriate decommissioning strategy by considering various evaluation attributes of possible decommissioning alternatives (immediate dismantling and delayed dismantling), the Wolsong Unit 1 decommissioning strategy was evaluated by reflecting the AHP decision-making technique.
        4.
        2023.11 구독 인증기관·개인회원 무료
        The nuclear power plant (NPP) decommissioning market is expected to expand not only domestically but also overseas. Proven technologies must be applied to decommission NPP. This is based on Article 41-2, Paragraph 2 of the domestic ‘Enforcement Decree Of The Nuclear Safety Act’. Proven technology refers to technology that has verified that it can be applied in the field through demonstration. In other words, in order to carry out NPP decommissioning, verification must be done. Demonstration refers to reducing technological uncertainty and directly verifying services implemented in the field. From a technology commercialization perspective, demonstration requires an approach based on technology readiness level (TRL) from a technology perspective and market readiness level (MRL) from a market perspective. The characteristics of demonstration also differ depending on the characteristics of each field. The demonstration in the field of nuclear energy is the demonstration of demand matching. This is to confirm the feasibility of the technology in the company’s required environment. In order to perform demonstration, a scenario must be derived by reflecting demonstration design considerations. After evaluating the derived scenario, an actual assessment is conducted using lab-based demonstration/virtual environment demonstration/real environment demonstration. What must be preceded by an actual assessment is confirming the consumer’s requirements. In this study, the necessary environment and requirements of consumer’s to perform NPP decommissioning were reviewed. The domestic decommissioning procedure requirements management system presents decommissioning procedures, potential worker accidents, and worker requirements. In the case of foreign countries, it was confirmed that complex wide need, cost benefit, risk reduction, waste generation, operation, reliability and maintenance (RAM) improvement and quantitative measures were evaluated for the technology to be demonstrated. Also the requirements for demonstrating decommissioning need to a detailed review of actual decommissioning cases. Therefore, a comparison must be made between the requirements based on actual NPP decommissioning cases and the requirements derived from this research process. Afterwards, the empirical research approach proposed by the Ministry of Trade, Industry and Energy was applied. The empirical research approach proposed by the Ministry of Trade, Industry and Energy is to secure a track record over a certain period of time and performance under conditions similar to the actual environment in the final research stage at the TRL level 6 to 8. Through this, it will be possible to confirm the suitability of overseas technology for domestic application.
        5.
        2023.11 구독 인증기관·개인회원 무료
        Kori unit 1 and Wolsong unit 1 were permanently shut down in 2017 and 2019, respectively. Both plants were decided to demolish the building without reuse. Large structures must be demolished after removing systems and components in the building, and in the case of large structures, thorough planning is required because of the large scale of work. Therefore, in this study, important considerations in the phase of the demolition plan of large structures when decommissioning were analyzed. The demolition of large structures at nuclear facilities is major one phase of work within a broader decommissioning plan. Furthermore, the actual demolition of the structure (i.e., physical process) represents the last step in a process that begins with extensive planning and analysis. The National Demolition Association (NDA) has provided checklist items that should be considered before the start of a commercial demolition project and/or in the bid process. Important Considerations in the Phase of the demolition plan of large structures when decommissioning of nuclear facilities are Site knowledge and programs, Engineering survey/demolition plan, Hazardous and radioactive materials, Open air demolition, Financial and project management, Permits, Code adherence, and Special programs, Disposal pathway, Final site condition. The results of this study can be used as a basis for the Planning large structures demolition of the Kori unit 1 and Wolsong unit 1.
        6.
        2022.10 구독 인증기관·개인회원 무료
        A large spectrum of possible stakeholders and important factors for safety improvement during decommissioning of nuclear facilities should be identified. Decommissioning includes additional aspects which are of interest to a wider range of stakeholders. The way in which local communities, the public in general, and a wide range of other parties are engaged in dialogue about decommissioning of nuclear facilities is likely to become an increasingly important issue as the scale of the activity grows. Timely stakeholder involvement may enhance safety and can encourage public confidence. Stakeholder engagement may result in attention to issues that otherwise might escape scrutiny. Public confidence is improved if issues that are raised by the public are taken seriously and are carefully and openly evaluated. Experience in many countries has shown that transparency can be an extremely effective tool to enhance safety performance. It sets out the development and implementation of an effective two-way process between the organization and stakeholders. Meaningful engagement is characterized through a flow of communication, opinions and proposals in both directions and the use of collaborative approaches to influence and explain decisions. The process is one in which an organization learns and improves its ability to perform meaningful stakeholder engagement while developing relationships of mutual respect, in place of one-off consultations. The evolving nature of this process is particularly relevant to pipeline projects, which will have differing stakeholder engagement requirements at each phase of the project lifecycle. Activity undertaken at all stages of the process should be documented to ensure engagement success can be reviewed and improved and to ensure historical decisions or engagements are captured in case stakeholders change during the progression of time and previous consultation records are required.
        7.
        2022.10 구독 인증기관·개인회원 무료
        In 2017, Kori unit 1 nuclear power plant was permanently shut down at the end of its life. Currently, Historical Site Assessment (HSA) for MARSSIM characteristics evaluation is being conducted according to the NUREG-1575 procedure, this is conducted through comprehensive details such as radiological characteristics preliminary investigation and on-site interview. Thus, the decommissioning of nuclear power plant must consider safety and economic feasibility of structures and sites. For this purpose, the establishment of optimal work plan is required which simulations in various fields. This study aims to establish procedure that can form a basis for a rational decommissioning plan using the virtual nuclear power plant model. The mapping procedure for 3D platform implementation consisted of three steps. First, scan the inside and outside of the nuclear power plant for decommissioning structure analysis, 3D modeling is performed based on the data. After that, a platform is designed to directly measure the radiation dose rate and mapped the derived to the program. Finally, mapping the radiation dose rate for each point in 3D using the radiation dose rate calculation factor according to the time change the measured value created on the 3D mapping platform. When the mapping is completed, it is possible to manage the exposure dose of workers according to the ALARA principle through the charge of radiation dose rate over time because of visualization of the color difference to the radiation dose rate at each point. For addition, the exposure dose evaluation considering the movement route and economic feasibility can be considered using developed program. As the interest in safety accidents for workers increases, the importance of minimum radiation dose and optimal work plan for workers is becoming increasingly important. Through this mapping procedure, it will be possible to contribute to the establishment of reasonable process for dismantling nuclear power plant in the future.
        8.
        2022.05 구독 인증기관·개인회원 무료
        Wolsong unit 1 (W1), which is a CANDU-6 type PHWRs that had been operated for 30 years since 1983, was shutdown in 2019. In this study, the radioactive waste levels of calandria and concrete structures were calculated to establish a decommissioning plan for W1. The specific systems within the scope of this study were grouped into 6 major categories as follows: Calandria, End Shield, Fuel Channel Assembly, Reactivity Control Device, End Shield Support, Vault. The main operating history of W1 is that the re-tubing project was performed. These characteristics and operation history were reflected in the evaluation. The neutron flux and energy spectrum of each structure were calculated by using MCNP code, and ORIGEN code is implemented to the calculation of radioactivity for each nuclide using the results from MCNP and the material information of the structure. As for the impurity information, ASTM B350, B351, B353 standard was used for zircaloy alloy. For other alloy, impurity information provided by NUREG/CR-3474 was applied. Since W1 is expected to be decommissioned immediately, the waste level was evaluated under cooling conditions for 5 years after permanent shutdown. Through the level evaluation of each component obtained as a result of the study, it can be used as basic data for the radioactive waste management of the decommissioning plan.
        14.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        대한민국 첫 상업원전인 고리1호기는 40년간의 성공적인 운전을 끝내고 2017년 6월 18일 영구정지 되었다. 고리1호기는 본격적인 해체에 앞서 터빈건물에 폐기물처리시설 건설을 계획하고 있다. 각종 방사성폐기물은 폐기물처리시설에서 제염, 해체, 절단, 용융되어 자체처분 되거나 방사성폐기물 처분장으로 보내 진다. 해체폐기물 중 대형금속방사성폐기물은 주로 1차 계통측 기기들로 높은 방사능을 띄고 있어 해체활동 중 작업자의 피폭관리가 필요하다. 본 논문에서는 대형금속방사성폐기물 중 크기가 가장 크고 형상이 복잡한 증기발생기를 선정하여 RESRAD-RECYCLE 코드를 이용하여 작업자 피폭선량을 평가하고 저감화 방안을 수립 하고자 한다.
        4,200원
        18.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        의료용 사이클로트론 해체시 많은 양의 저준위 방사성 폐기물을 발생시키며 이에 따른 큰 해체 비용을 야기한다. 이에 국외에서는 동위원소 생산시설 도입시 해체 자금에 관한 계획을 제출할 것을 권고하고 있다. 해체 자금 계획 수립을 위해서는 해체 비용을 해체 활동과 시설의 구성 요소에 맞게 합리적으로 계산되어야 한다. 본 연구에서는 2012년 12월 수행된 국내 서울대학교병원 사이클로트론(TR-13) 해체 사례를 통하여 폐기 시나리오일 때의 방사성 폐기물 처리 비용을 분석하고 해체 비용 산정시 필요한 고려사항에 대해 살펴보고 향후 해체 자금 계획 수립에 필요한 사항을 도출하고자 하였다.