검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.11 구독 인증기관·개인회원 무료
        In the decommissioning process of nuclear power plants, Ni-59, Ni-63 and Fe-55 present in radioactive waste are crucial radionuclides used as fundamental indicators in determining waste treatment methods. However, due to their low-energy emissions, the chemical separation of these two radionuclides is essential compared to others. Therefore, this study aims to evaluate the suitability of various pre-treatment methods for decommissioning waste materials by conducting characteristic assessments at each chemical separation stage. The goal is to find the most optimized pre-treatment method for the analysis of Ni-59, Ni-63 and Fe-55 in decommissioning waste. The comparative evaluation results confirm that the chemical separation procedures for Fe and Ni are very stable in terms of stepwise recovery rates and the removal of interfering radionuclides. However, decommissioning waste materials, which mainly consist of concrete, metals, etc., possess unique properties, and a significant portion may be low-radioactivity waste suitable for on-site disposal. Considering that the chemical behavior and reaction characteristics may vary at each chemical separation stage depending on the matrix properties of the materials, it is considered necessary to apply cascading chemical separation or develop and apply individual chemical separation methods. This should be done by verifying and validating their effectiveness on actual decommissioning waste materials.
        2.
        2023.11 구독 인증기관·개인회원 무료
        For the disposition of radioactive wastes generated from nuclear power plant, radioisotope inventory must be analyzed to determine an activity concentration of radionuclides. Radionuclides in low- and intermediate-low-level of radioactive wastes, however, can be easily classified to easyto- measure (ETM) and difficult-to-measure (DTM) nuclides. ETM nuclides are gamma emitting nuclides that is relatively easy to measure because they do not need to be destroyed for the preprocessing. On the other hands, DTM nuclides are alpha and beta emitting nuclides that need to be destroyed for the preprocessing and also need chemical separation. Currently, measurement methods for DTM nuclides are developed and in this paper measurement methods of Fe-55, Ni-59, Ni-63, Sr-90 and Tc-99 will be introduced.
        3.
        2022.05 구독 인증기관·개인회원 무료
        In order to indirectly evaluate the inventory of difficult-to-measure (DTM) nuclides in radioactive waste, the scaling factor method by key nuclide has been used. It has been usually applied to low-and intermediate-level dry active waste (DAW), and the tolerance of 1,000% margin of error in the US, that is the factor of 10, is applied as an allowable confidence limits considering the inhomogeneity of the waste and the limitation of sample size. This is because the scaling factor method is based on economic efficiency. Confidence limits is the uncertainty (sampling error) according to predicting the mean value of the population by the mean value of the sample at 95% confidence level, reflecting the limitations of sample size (representation) with the standard deviation. If the standard deviation is large, the sample size can be increased to satisfy the allowable confidence limits. In the new nuclear power plants, the concentration of cesium nuclide (137Cs) in radioactive waste tends to be very low due to advances in nuclear fuel and reactor core management technology, which makes it very difficult to apply cesium as a key nuclide. In addition, it is inevitable to apply the mean activity concentration method, which reasonably and empirically derives the concentration of DTM nuclides regardless of key nuclide, when the correlation between key and DTM nuclides is not significant. The mean activity method is a methodology that applies the average concentration of a sample set to the entire population, and is similar to applying the average concentration ratio between key and DTM nuclides of a sample set to the population in the scaling factor method. Therefore, in this paper, the maximum acceptable uncertainty (confidence limits) at a reasonable level was studied when applying the mean activity concentration method by arithmetic mean unlike the scaling factor method which usually uses the geometric mean method. Several measures were proposed by applying mutatis mutandis the acceptable standard deviation in radiation measurement and the factor of 10 principle, etc., and the appropriateness was reviewed through case analysis.
        5.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The overestimation and underestimation of the radioactivity concentration of difficult-to-measure radionuclides can occur during the implementation of the scaling factor (SF) method because of the uncertainties associated with sampling, radiochemical analysis, and application of SFs. Strict regulations ensure that the SF method as an indirect method does not underestimate the radioactivity of nuclear wastes; however, there are no clear regulatory guidelines regarding the overestimation. This has been leading to the misuse of the SF methodology by stakeholders such as waste disposal licensees and regulatory bodies. Previous studies have reported instances of overestimation in statistical implementation of the SF methodology. The analysis of the two most popular linear models of the SF methodology showed that severe overestimation may occur and radioactivity concentration data must be dealt with care. Since one major source of overestimation is the use of minimum detectable activity (MDA) values as true activity values, a comparative study of instrumental techniques that could reduce the MDAs was also conducted. Thermal ionization mass spectrometry was recommended as a suitable candidate for the trace level analysis of long-lived beta-emitters such as iodine-129. Additionally, the current status of the United States and Korea was reviewed from the perspective of overestimation.
        5,500원