검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The primary objective of this study is to analyze the relationship between the factors that affect traffic incident duration in the mainline, tunnel, and ramp segments of an expressway. In addition, this study derived the most suitable statistical prediction model based on various incident duration distributions. METHODS : South Korean expressway crash data for 11 years, from 2011 to 2021, were analyzed. The incident durations on the mainline, tunnel, and ramp segments were selected using the accelerated failure time model, which is a parametric survival analysis approach. RESULTS : The mainline segment showed that the incident duration increased during accidents, including guard pipe collisions, multivehicle collisions, and snowfall. In particular, collisions in a tunnel with shoulder facilities increase the incident duration, while decreasing the time in the ramp segment. CONCLUSIONS : The incident duration model for each segment type yielded the most accurate results when applying a log-logistic distribution.
        4,000원
        2.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reliability analysis of the components frequently starts with the data that manufacturer provides. If enough failure data are collected from the field operations, the reliability should be recomputed and updated on the basis of the field failure data. However, when the failure time record for a component contains only a few observations, all statistical methodologies are limited. In this case, where the failure records for multiple number of identical components are available, a valid alternative is combining all the data from each component into one data set with enough sample size and utilizing the useful information in the censored data. The ROK Navy has been operating multiple Patrol Killer Guided missiles (PKGs) for several years. The Korea Multi-Function Control Console (KMFCC) is one of key components in PKG combat system. The maintenance record for the KMFCC contains less than ten failure observations and a censored datum. This paper proposes a Bayesian approach with a Dirichlet mixture model to estimate failure time density for KMFCC. Trends test for each component record indicated that null hypothesis, that failure occurrence is renewal process, is not rejected. Since the KMFCCs have been functioning under different operating environment, the failure time distribution may be a composition of a number of unknown distributions, i.e. a mixture distribution, rather than a single distribution. The Dirichlet mixture model was coded as probabilistic programming in Python using PyMC3. Then Markov Chain Monte Carlo (MCMC) sampling technique employed in PyMC3 probabilistically estimated the parameters’ posterior distribution through the Dirichlet mixture model. The simulation results revealed that the mixture models provide superior fits to the combined data set over single models.
        4,000원
        3.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        All machines deteriorate in performance over time. The phenomenon that causes such performance degradation is called deterioration. Due to the deterioration, the process mean of the machine shifts, process variance increases due to the expansion of separate interval, and the failure rate of the machine increases. The maintenance model is a matter of determining the timing of preventive maintenance that minimizes the total cost per wear between the relation to the increasing production cost and the decreasing maintenance cost. The essential requirement of this model is that the preventive maintenance cost is less than the failure maintenance cost. In the process mean shift model, determining the resetting timing due to increasing production costs is the same as the maintenance model. In determining the timing of machine adjustments, there are two differences between the models. First, the process mean shift model excludes failure from the model. This model is limited to the period during the operation of the machine. Second, in the maintenance model, the production cost is set as a general function of the operating time. But in the process mean shift model, the production cost is set as a probability functions associated with the product. In the production system, the maintenance cost of the equipment and the production cost due to the non-confirming items and the quality loss cost are always occurring simultaneously. So it is reasonable that the failure and process mean shift should be dealt with at the same time in determining the maintenance time. This study proposes a model that integrates both of them. In order to reflect the actual production system more accurately, this integrated model includes the items of process variance function and the loss function according to wear level.
        4,000원
        5.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we present a new way to derive the mean cycle time of the G/G/m failure prone queue when the loading of the system approaches to zero. The loading is the relative ratio of the arrival rate to the service rate multiplied by the number of servers. The system with low loading means the busy fraction of the system is low. The queueing system with low loading can be found in the semiconductor manufacturing process. Cluster tools in semiconductor manufacturing need a setup whenever the types of two successive lots are different. To setup a cluster tool, all wafers of preceding lot should be removed. Then, the waiting time of the next lot is zero excluding the setup time. This kind of situation can be regarded as the system with low loading. By employing absorbing Markov chain model and renewal theory, we propose a new way to derive the exact mean cycle time. In addition, using the proposed method, we present the cycle times of other types of queueing systems. For a queueing model with phase type service time distribution, we can obtain a two dimensional Markov chain model, which leads us to calculate the exact cycle time. The results also can be applied to a queueing model with batch arrivals. Our results can be employed to test the accuracy of existing or newly developed approximation methods. Furthermore, we provide intuitive interpretations to the results regarding the expected waiting time. The intuitive interpretations can be used to understand logically the characteristics of systems with low loading.
        4,000원
        6.
        2015.04 구독 인증기관 무료, 개인회원 유료
        보증데이터의 분석 목적은 크게 세 가지로 분류할 수 있다. 첫째 현상파악이다. 현 상파악은 각 부품별 보증클레임데이터를 이용하여 각부품의 현수준을 분석하는 방법 으로 단변량 분석방법이다. 즉 부품의 현 수명(신뢰도)를 분석할 수 있는 생명표법, 카 랜마이어 방법이 대표적이라고 할 수 있다. 둘째, 고장원인분석이다. 부품의 고장에 다 양한 인자가 영향을 줄 것이다. 생산부터 고객의 사용조건까지 다양할 것이다. 이처럼 단순히 사용시간을 가지고 분석하는 것이 아닌 다양한 원인변수를 통해서 원인을 파 악하는 다변량 방법이다. 셋째, 단변량이 아닌 다변량 수명예측방법으로 그 모형의 구 조에 따라 비례적 위험함수 모형 (proportional hazards)의 가정을 적용하는 COX 모형 과 가속화 시간 (accelerated failure time)을 적용하는 AFT 모형으로 분류할 수 있다. 본 연구에서는 예측에 적합한 AFT모형을 통해서 생존 시간 자체에 대한 설명변수 의 효과를 모형화하고 각 부품의 수명을 예측하고자 한다. 이 방법을 제시하는 이유는 COX모형의 경우 준 모수적 방법으로 위험함수의 모수적 유형을 지정하지 않아도 된 다는 장점을 가지고 있지만, 위험 함수 보다는 설명변수의 효과를 추정에 그 주 목적 이 있기 때문에 모형의 결과를 수명예측에 사용하기에는 부적합하다. 본 논문에서는 다양한 인자를 고려하여 부품의 수명 및 수명에 대한 설명변수의 효 과를 모형화 하여 보증데이터를 분석하는 AFT 모형을 제시 하였고 실제 보증데이터 를 통해서 AFT 모형의 활용성을 확인하였다.
        4,000원
        7.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The O&M (Operation and Maintenance) phase of offshore plants with a long life cycle requires heavy charges and more efforts than the construction phase, and the occurrence of an accident of an offshore plant causes catastrophic damage. So previous studies have focused on the development of advanced maintenance system to avoid unexpected failures. Nowadays due to the emerging ICTs (Information Communication Technologies) and sensor technologies, it is possible to gather the status data of equipment and send health monitoring data to administrator of an offshore plant in a real time way, which leads to having much concern on the condition based maintenance policy. In this study, we have reviewed previous studies associated with CBM (Condition-Based Maintenance) of offshore plants, and introduced an algorithm predicting the next failure time of the compressor which is one of essential mechanical devices in LNG FPSO (Liquefied Natural Gas Floating Production Storage and Offloading vessel). To develop the algorithm, continuous time Markov model is applied based on gathered vibration data.
        4,300원
        8.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Recently durability design based on deterministic or probabilistic method has been attempted since service life evaluation in RC(Reinforced Concrete) structure exposed to chloride attack is important. The deterministic durability design contains a reasonable method with time effect on surface chloride content and diffusion coefficient, however the probabilistic design procedure has no consideration of time effect on both. In the paper, a technique on PDF(Probability of Durability Failure) evaluation is proposed considering time effect on diffusion and surface chloride content through equivalent surface chloride content which has same induced chloride content within a given period and cover depth. With varying period to built-up from 10 to 30 years and maximum surface chloride content from 5.0 kg/m3 to 10.0 kg/m3, the changing PDF and the related service life are derived. The proposed method can be reasonably applied to actual durability design with preventing conservative design parameters and considering the same analysis conditions of the deterministic method.
        9.
        2009.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 상수관망에서 개별적으로 노후도가 심하여 개량이 필요한 구간을 보다 정확하게 구분하기 위해 새로운 개별관로 정의 방법이 개발되었다. 적절한 관로 최소구성성분 길이를 결정하기 위하여 여러 가지 관로 최소구성성분 길이에 대한 평균 누적파손횟수경사선의 분산값을 비교하여 가장 큰 분산값을 나타내는 관로 최소구성성분 길이인 4 m 를 연구대상 지역의 상수관망에 적용하였으며 관로 ID는 39개로 구분되어졌다. 관로의 경제적 최적교체 시기는 한계파손율과
        10.
        2008.11 KCI 등재 서비스 종료(열람 제한)
        This study aims at the estimation of dam failure time and dam failure scenario analysis of and applied to Yeoncheon Dam which was collapsed August 1st 1999, using HEC-HMS, DAMBRK-FLDWAV simulation model. As the result of the rainfall-runoff simulation, the lancet flood amount of the Yeoncheon Dam site was 10,324 m3/sec and the total outflow was 1,263.90 million m3. For the dam failure time estimation, 13 scenarios were assumed including dam failure duration time and starting time, which reviewed to the runoff results. The simulation time was established with 30 minutes intervals between one o'clock to 4 o'clock in the morning on August 1, 1999 for the setup standard for each case of the dam failure time estimation, considering the arrival time of the flood, when the actually measured water level was sharply raising at Jeongok station area of the Yeoncheon Dam downstream, As results, dam failure arrival time could be estimated at 02:45 a.m., August 1st 1999 and duration time could be also 30 minutes. Those results and procedure could suggest how and when dam failure occurs and analyzes.
        11.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 대수-선형 파손율 모형(log-linear ROCOF)과 와이블 파솔율 모형(Weibull ROCOF)을 이용하여 상수도 주철 배수관로의 파손율을 모형화하고, '수정된 시간 척도'를 이용하여 최적교체시기를 산정할 수 있는 방법이 개발되었다. 두 ROCOF의 모형화를 위하여 개별 관로의 파손시간을 기록한 '파손 시간자료(failure-time data)'와 일정 시간간격 사이에서 발생하는 파손횟수를 기록한 '파손 횟수자료(failure-nu