검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron oxide (Fe2O3) nanoclusters exhibit significant potential in the biomedical and pharmaceutical fields due to their strong magnetic properties, stability in solutions, and compatibility with living systems. They excel in magnetic separation processes, displaying high responsiveness to external magnetic fields. In contrast to conventional Fe2O3 nanoparticles that can aggregate in aqueous solutions due to their ferrimagnetic properties, these nanoclusters, composed of multiple nanoparticles, maintain their magnetic traits even when scaled to hundreds of nanometers. In this study, we develop a simple method using solvothermal synthesis to precisely control the size of nanoclusters. By adjusting precursor materials and reducing agents, we successfully control the particle sizes within the range of 90 to 420 nm. Our study not only enhances the understanding of nanocluster creation but also offers ways to improve their properties for applications such as magnetic separation. This is supported by our experimental results highlighting their size-dependent magnetic response in water. This study has the potential to advance both the knowledge and practical utilization of Fe2O3 nanoclusters in various applications.
        4,000원
        2.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene oxide/Iron III oxide (GO: Fe2O3) nanocomposites (NCs) have been topical in recent times owing to the enhanced properties they exhibit. GO acting as a graphene derivative has demonstrated superior features as obtainable in a graphene sheet. Furthermore, the attachment of oxygen functional groups at its basal and edge planes of graphene has allowed for easy metal/oxide functionalization for improved properties harvesting. Fe2O3 nanoparticles (NPs) on the other hand have polymorphic property enabling the degeneracy of Fe2O3 in different phases, thereby resulting in different physical and crystalline properties when used to functionalize GO. The properties of GO: Fe2O3 have been applied to supercapacitor energy harvesting, Li-ion batteries, and biomedicine. The enhanced properties are attributed to the adsorption and electronic structure properties of Fe atoms. In this review, the various synthesis used in the preparation of reduced/graphene oxide: Fe2O3 is discussed. As indicated in the considered literature, the XPS analysis suggests electronic bond interactions between C–C, C–O, C–Fe and Fe–C. The available report on UPS measurements further suggests the formation of mixed states emanating from  and  bonds. The discussed reports further suggest that the various applications based on the harvesting of electronic, electrical, and magnetic properties are due to the ionic and exchange interactions between the different orbital states of carbon, oxygen and iron. The challenges and future prospects of the synthesis and application of GO/Fe2O3 are examined. Graphical abstract showing the process of exfoliation, reduction and functionalization of graphite to produce reduced graphene oxide (rGO).
        8,400원
        3.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we presented a hybrid composite of graphene quantum dots (GQDs)-modified three-dimensional graphene nanoribbons (3D GNRs) composite linked by Fe3O4 and CoO nanoparticles through reflux and ultrasonic treatment with GQDs, denoted as 3D GQDs-Fe3O4/CoO@GNRs (3D GFCG). In this hybrid, the 3D GNRs framework strengthened the electrical conductivity and the synergistic effects between GQDs and 3D GFCG enhanced the oxygen reduction reaction (ORR) activity of the nanocomposite. The results imply that decorating GQDs with other electro-catalysts is an effective strategy to synergistically improve their ORR activity.
        4,000원
        4.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.
        4,000원
        5.
        2022.05 구독 인증기관·개인회원 무료
        The origin of Fe oxide deposition on zirconium oxide with UV irradiation has been investigated in this study. After 7 day corrosion in the flowing autoclave, Fe based oxide is formed on the zirconium oxidewith UV irradiation at 260°C, 6 MPa DI water. Zircaloy-4 coupon is irradiated with a 200 mW·cm−2 UV, and the dissolved oxygen level is maintained below 100 ppb, and dissolved hydrogen concentration is maintained as 2.5 ppm. Zircaloy-4 coupon supplied from Westinghouse is used for this study. MULTEQ version 4.0 developed by EPRI is adopted to simulate how ions dissolved in water can generate deposits on the zirconium oxide with UV irradiation. ICP-OES data after 30 d corrosion in the flowing loop experiment is used for input file for MULTEQ simulation. The system temperature is set as 260°C, and 2,592 L of water is considered the total amount water into the autoclave (0.06 mL·min−1, 30 d). Total numbers of simulation run is set as 8, and the system pH at 260°C is 6.06. Oxidation potential after run #8 is −0.44 V. From MULTEQ simulation, most Fe is existed as Fe(OH)3 and Fe(OH)2, and Fe ions can also exist, but no Fe metal observed. 5.09 × 10−6 ppm (9.73 ppb) of Fe2+, 2.81 × 10−6 ppm FeOH+, and 3.77 × 10−9 ppm Fe(OH)3are in the system. It can be concluded Fe is existed as ion or hydroxide form in the solution. Two precipitates are found from MULTEQ simulation, First, NiO(s) = 5.21 × 10−5 g (52.1 μg), NiFe2O4 = 8.06 × 10−5 g (80.6 μg), and still they are negligible amount. The total concentration of Fe in the electrolyte is the summation of each Fe species concentration and it is equal to 2.69×10−4 ppm. This value is equivalent to 0.269 μg·kg−1 in the solution. The total water volume of the 30 d experiment is 2,592 L (considering water flow from high-pressure pump), so the amount of Fe from ICP-OES data and MULTEQ results in 2,592 L electrolyte is 697.2 μg. This value is order of magnitudes higher than the mass of Fe from the deposits, which was already an upper estimate based on the assumptions. This clearly shows that Fe ions dissolved in the electrolyte can be the source of Fe3O4 on Zr oxide during corrosion with UV irradiation.
        6.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have prepared MIL-101/graphene oxide (GO) composites with various mixing molar ratio of Fe-containing metal– organic frameworks (MOFs) against GO. When synthesizing MOFs, it was possible to synthesize uniform crystal powders using hydrothermal method. MIL-101 consists of a terephthalic acid (TPA) ligand, with the central metal composed of Fe, which was the working electrode material for supercapacitors. Field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis had been done to ascertain microstructures and morphologies of the composites. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge measurements were performed to analyze the electrochemical properties of the composite electrodes in 6 M KOH electrolyte. By controlling the metal ligand mole ratio against GO, we prepared a changed MOF structure and a different composite morphology, which could be studied as one of the promising optimized electrode materials for supercapacitors.
        4,200원
        7.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of Y2O3 particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and 1100 oC for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at 1100 oC showed a more homogeneous microstructure. In the case of sintering at 1100 oC, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.
        4,000원
        8.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the oxidation properties of Fe-14Cr ferritic oxide-dispersion-strengthened (ODS) steel at various high temperatures (900, 1000, and 1100°C for 24 h). The initial microstructure shows that no clear structural change occurs even under high-temperature heat treatment, and the average measured grain size is 0.4 and 1.1 μm for the as-fabricated and heat-treated specimens, respectively. Y–Ti–O nanoclusters 10–50 nm in size are observed. High-temperature oxidation results show that the weight increases by 0.27 and 0.29 mg/cm2 for the asfabricated and heat-treated (900°C) specimens, and by 0.47 and 0.50 mg/cm2 for the as-fabricated and heat-treated (1000°C) specimens, respectively. Further, after 24 h oxidation tests, the weight increases by 56.50 and 100.60 mg/cm2 for the as-fabricated and heat-treated (1100°C) specimens, respectively; the latter increase is approximately 100 times higher than that at 1000°C. Observation of the surface after the oxidation test shows that Cr2O3 is the main oxide on a specimen tested at 1000°C, whereas Fe2O3 and Fe3O4 phases also form on a specimen tested at 1100°C, where the weight increases rapidly. The high-temperature oxidation behavior of Fe-14Cr ODS steel is confirmed to be dominated by changes in the Cr2O3 layer and generation of Fe-based oxides through evaporation.
        4,000원
        10.
        2015.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fe-base superalloy powders with Y2O3 dispersion were prepared by high energy ball milling, followed by sparkplasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50mm were usedfor the preparation of Fe-20Cr-4.5Al-0.5Ti-O.5Y2O3 powder mixtures (wt%). The milling process of the powders was carriedout in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation(350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) wereapplied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclicoperation and was about 15nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constantmilling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at 1100oC for 30 min invacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, ahomogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.
        4,000원
        11.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A precipitation behavior of nano-oxide particle in Fe-5Y2O3 alloy powders is studied. The mechanically alloyed Fe-5Y2O3 powders are pressed at 750oC for 1h, 850oC for 1h and 1150oC for 1h, respectively. The results of Xray diffraction pattern analysis indicate that the Y2O3 diffraction peak disappear after mechanically alloying process, but Y2O3 and YFe2O4 complex oxide precipitates peak are observed in the powders pressed at 1150oC. The differential scanning calorimetry study results reveal that the formation of precipitates occur at around 1054oC. Based on the transmission electron microscopy analysis result, the oxide particles with a composition of Y-Fe-O are found in the Fe-5Y2O3 alloy powders pressed at 1150oC. It is thus conclude that the mechanically alloyed Fe-5Y2O3 powders have no precipitates and the oxide particles in the powders are formed by a high temperature heat-treatment
        4,000원
        12.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는, 산화그래핀(GO) 및 산화철이 기능화된 산화그래핀(M-GO)을 용매인 dimethylformamide (DMF)에초음파분쇄법을 이용하여 완전히 분산시킨 후, 기질고분자인 polyacrylonitrile (PAN)에 첨가하여 전기방사함으로써, 나노섬유 형태의 복합분리막을 제조하였다. 제조된 나노섬유 분리막은 적층수를 변화시켜 기공크기를 조절하였다. Scanning Electron Microscope (SEM) 분석 결과로부터 약 500 nm 크기의 고른 직경분포를 가진 나노섬유 복합분리막이 제조되었음을 확인하였다. 또한, Raman spectroscopy 분석과 Energy Dispersive x-ray Spectroscopy (EDS) 분석 결과로부터 GO 및 M-GO가 분리막 내에 분산되어 있음을 확인하였다. 최종 나노섬유 복합분리막은 상용막(0.27 µm, 55%)과 유사한 기공특성(0.21~0.24 µm,40%)을 보여주었으며, 수투과도 측정결과 PAN 막에 비해 약 200% 향상된 성능을 보여주었다. 이러한 결과로부터, 전기방사법으로 제조된 나노섬유 복합분리막은 수처리용 분리막으로서 충분한 활용가능성이 있다고 판단된다.
        4,000원
        14.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A study of oxidation kinetic of Fe-36Ni alloy has been investigated using thermogravimetric apparatus (TGA) in an attempt to define the basic mechanism over a range of temperature of 400 to and finally to fabricate its powder. The oxidation rate was increased with increasing temperature and oxidation behavior of the alloy followed a parabolic rate law at elevated temperature. Temperature dependence of the reaction rate was determined with Arrhenius-type equation and activation energy was calculated to be 106.49 kJ/mol. Based on the kinetic data and micro-structure examination, oxidation mechanism was revealed that iron ions and electrons might migrate outward along grain boundaries and oxygen anion diffused inward through a spinel structure, .
        4,000원
        15.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To produce alloy powders with only SmFe single phase by reduction-diffusion (R-D) method, the effect of excess samarium oxide on the preparation of Sm-Fe alloy powder during R-D heat treatment was studied. The quantity of samarium oxide was varied from 5% to 50% whereas iron and calcium were taken 0% and 200% in excess of chemical equivalent, respectively. The pellet type mixture of samarium, iron powders and calcium granulars was subjected to heat treatment at 1100 for 5 hours. The R-D treated pellet was moved into deionized water and agitated to separate Sm-Fe alloy powders. After washing them in deionized water several times, the powders were washed with acetic acid to remove the undesired reaction products such as CaO. By these washing and acid cleaning treatment, only 0.03 wt% calcium remained in Sm-Fe alloy powders. It was also confirmed that the content of unreacted -Fe in SmFe matrix gradually decreased as the percentage of samarium oxide is increased. However, there was no significant change above 40% excess samarium oxide.
        4,000원
        16.
        2006.09 구독 인증기관·개인회원 무료
        Mn-Fe oxide and Mn-Fe oxide/(50wt%/50wt%) were prepared by ball milling method. XRD data of the prepared samples revealed that hematite and ferrite phase coexisted. Water splitting at 1273K, after thermal reduction at 1573K, was performed 4 times for the samples. Hydrogen production amount was analyzed by GC with TCD detector. Water splitting capacity of Mn-Fe oxide was improved by ball milling with .