검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2019.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to analyze the effect of hot asymmetric rolling on the microstructure and texture of aluminum alloy and to investigate the effect of the texture on the formability and plastic anisotropy of aluminum alloy, aluminum 6061 alloy is asymmetrically rolled at room temperature, 200 ℃, 350 ℃, and 500 ℃, and the results are compared with symmetrically rolled results. In the case of asymmetric rolling, the equivalent strain (εeq) is greatest in the upper roll part where the rotational speed of the roll is high and increases with increasing rolling temperature. The increase rate of the mean misorientation angle with increasing temperature is larger than that during symmetrical rolling, and dynamic recrystallization occurs the most when asymmetrical rolling is performed at 500 ℃. In the case of hot symmetric rolling, the {001}<110> rotated cube orientation mainly develops, but in the case of hot asymmetric rolling, the {111}<110> orientation develops along with the {001}<100> cube orientation. The hot asymmetric rolling improves the formability (r) of the aluminum 6061 alloy to 0.9 and reduces the plastic anisotropy (Δr) to near zero due to the {111}<110> shear orientation that develops by asymmetric rolling.
        4,000원
        2.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to develop formability evaluation techniques in order to apply aluminum sandwich panel for automotive body parts. For this purpose, formability evaluation by using FLD (forming limit diagram) was carried out in order to secure the fundamental data for the measurement of sheet metal forming and the establishment of optimum forming conditions of the aluminum sandwich panel. From the results of these formability evaluation, the formability of aluminum alloy sheet which was the skin component for the sandwich panel was higher than that of sandwich panel. In addition, the formability of sandwich sheet which was made by present study was same as that of sandwich panel made by foreign country. Also, it was found that sandwich panel made in present study could have the excellent deep draw-ability when it was compared to the foreign made sandwich panel.
        4,000원
        3.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of particle size of Li-Si alloy and LiCl-KCl addition as a binder phase for raw material of anode were investigated on the formability of the thermal battery anode. The formability was evaluated with respect to filling density, tap density, compaction density, spring-back and compressive strength. With increasing particle size of Li-Si alloy powder, densities increased while spring-back and compressive strength decreased. Since the small spring-back is beneficial to avoiding breakage of pressed compacts, larger particles might be more suitable for anode forming. The increasing amount of LiCl-KCl binder phase contributed to reducing spring-back, improving the formability of anode powder too. The control of particle size also seems to be helpful to get double pressed pellets, which consisted of two layer of anode and electrolyte.
        4,000원
        4.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        FeS2 has been widely used for cathode materials in thermal battery because of its high stability and currentcapability at high operation temperature. Salts such as a LiCl-KCl were added as a binder for improving electrical per-formance and formability of FeS2 cathode powder. In this study, the effects of the addition of Li2O in LiCl-KCl binderon the formability of FeS2 powder compact were investigated. With the increasing amount of Li2O addition to LiCl-KClbinder salts, the strength of the pressed compacts increased considerably when the powder mixture were pre-heat-treatedabove 350oC. The heat-treatment resulted in promoting the coating coverage of FeS2 particles by the salts as Li2O wasadded. The observed coating as Li2O addition might be attributed to the enhanced wettability of the salt rather than itsreduced melting temperature. The high strength of compacts by the Li2O addition and pre-heat-treatment could improvethe formability of FeS2 raw materials.
        4,000원
        5.
        2012.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study evaluated the enhancement of microstructural and mechanical properties of a cross rolled Ni-10Cr alloy, comparing with conventionally rolled material. Cold rolling was carried out to 90% thickness reduction and the specimens were subsequently annealed at 700˚C for 30 min to obtain a fully recrystallized microstructure. Cross roll rolling was carried out at a tilted roll mill condition of 5˚ from the transverse direction in the RD-TD plane. In order to observe the deformed microstructures of the cold rolled materials, transmission electron microscopy was employed. For annealed materials after rolling, in order to investigate the grain boundary characteristic distributions, an electron back-scattering diffraction technique was applied. Application of cold rolling to the Ni-10Cr alloy contributed to notable grain refinement, and consequently the average grain size was refined from 135 μm in the initial material to 9.4 and 4.2 μm in conventionally rolled and cross rolled materials, respectively, thus showing more significantly refined grains in the cross rolled material. This refined grain size led to enhanced mechanical properties such as yield and tensile strengths, with slightly higher values in the cross rolled material. Furthermore, the<111>//ND texture in the CRR material was better developed compared to that of the CR material, which contributed to enhanced mechanical properties and formability.
        4,000원