검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 150

        41.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Despite having a low electrical conductivity, graphene oxide (GO) is used as an anode material in lithium-ion batteries (LIBs) owing its good processability in large quantities. GO is reduced by chemical or thermal treatments to enhance its electrical conductivity. In this study, high-performance GO anodes with polydopamine (PDA) and polyethylenimine (PEI) as binders were fabricated. Gamma (γ)-ray irradiation was applied to the GO–PDA–PEI hybrid sheets to covalently cross-link the GO sheets and binders with an amide bond. The covalent crosslinking was confirmed by Fourier-transform infrared spectroscopy analysis. Further, X-ray photoelectron spectroscopy results showed that γ-ray irradiation produced a reduced GO sheet, which resulted in an increase in the electrical conductivity by 30%. By characterizing the electrochemical properties, we found that the γ-ray irradiation facilitates the stability and increases the charge/discharge capacity by crosslinking GO and PDA–PEI binders and reducing the GO sheets.
        4,000원
        42.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        그래핀옥사이드는 우수한 물리적 특성 및 가공성으로 멤브레인 소재로 각광받고 있다. 특히, 이론적 예측과 실험 적인 접근을 통해 그래핀옥사이드의 원자 수준의 얇은 두께, 뛰어난 기계적 강도, 높은 수준의 내화학성, 기공 생성이 가능한 2차원 구조 또는 기체 확산 유로 생성이 가능한 적층구조 등 멤브레인 소재로서 매우 유리한 특성들을 보유하고 있음이 밝혀 졌다. 또한 그래핀옥사이드에서의 분자 투과 거동은 적층된 그래핀옥사이드 사이의 채널 크기에 따라 영향을 받는다는 것이 발견되었다. 그 후, 이러한 특성을 응용하여 그래핀옥사이드를 멤브레인 소재로 활용하기 위해 많은 연구가 집중적으로 진행 되고 있다. 본 총설에서는 그래핀옥사이드의 고유 특성을 기반으로 멤브레인 분야로의 응용 가능성에 대하여 논하고자 한다.
        4,300원
        43.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the arsenide removal by using mesoporous CoFe2O4/ graphene oxide nanocomposites based on batch experiments optimized by artificial intelligence tools. These nanocomposites were prepared by immobilizing cobalt ferrite on graphene oxide and then characterized using various techniques, including small angle X-ray diffraction, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. Artificial intelligence tools associated with response surface methodology were employed to optimize the conditions of the arsenide removal process. The results showed that back propagation neural network combined with genetic algorithm was suitable for the arsenide removal from aqueous solutions by the nanocomposites based on the minimum average values of absolute errors and the value of R2. The optimal values of the four variables (operating temperature, initial pH, initial arsenide concentration, and contact time) were found to be 25.66 °C, 7.58, 10.78 mg/L and 46.41 min, and the predicted arsenide removal percentage was 84.78%. The verification experiment showed that the arsenide removal percentage was 86.62%, which was close to the predicted value. Three evaluation methods (gradient boosted regression trees, Garson method and analysis of variance) all demonstrated that the temperature was the most important explanatory variable for the arsenide removal. In addition, the arsenide removal process can be depicted with pseudo-second-order kinetics model and Langmuir isotherm, respectively. The thermodynamics investigation disclosed that the adsorption process was of a spontaneously endothermic nature. In summary, this study showed that ANN-GA was an efficient and feasible method in determining the optimum conditions for arsenic removal by CoFe2O4/ graphene oxide nanocomposites.
        4,900원
        44.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lately, Raman spectroscopy has become powerful tool for quality assessment of graphene analogues with identification of intensity ratio of Raman active D-band and G-band ( ID/IG ratio) as a vital parameter for quantification of defects. However, during chemical reduction of graphitic oxide (GrO) to reduced GrO (RGrO), the increased ID/ IG ratio is often wrongly recognized as defect augmentation, with “formation of more numerous yet smaller size sp2 domains” as its explanation. Herein, by giving due attention to normalized peak height, full-width half-maxima and integrated peak area of Raman D- and G-bands, and compliment the findings by XRD data, we have shown that in-plane size of sp2 domains actually increases upon chemical reduction. Particularly, contrary to increased ID/ IG ratio, the calculated decrease in integrated peak area ratio ( AD/AG ratio) in conjunction with narrowing of D-band and broadening of G-band, evinced the decrease in in-plane defects. Finally, as duly supported by reduction induced broadening of interlayer-spacing characteristic XRD peak and narrowing of ~ 43° centered XRD hump, we have also shown that the sp2 domains actually expands in size and the observed increase in ID/ IG ratio is indeed due to increase in across-plane defects, formed via along-the-layer slicing of graphitic domains.
        4,000원
        48.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene-based materials show excellent properties in various applications because of their electrical properties, large surface areas, and high tolerance for chemical modification. The use of wet-process is a promising way for their mass production. Heteroatom doping is one of the common methods to improve their electrical, physical, and electrochemical properties. In this work, we develop a new route for the production B-doped graphene-based materials using low-temperature wet-process, which is the reaction between graphene oxide suspensions and a BH3 adduct in tetrahydrofuran under reflux. Elemental mapping images show well-dispersed B atoms along the materials. Various spectroscopic characterizations confirm the reduction of the graphene oxide and incorporation of B atoms into the carbon network as high as ~ 2 at%. The materials showed electrocatalytic activity for oxygen reduction reactions.
        4,000원
        49.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The preparation of graphene oxide and the modification of its surface directly with copper pentacyanonitrosylferrate (III) nanoparticles are presented in this work, as well as the characterization of the materials using Fourier-transform infrared spectra, X-ray diffractometry and scanning electron microscopy techniques. Beyond that, the study on the electrochemical behavior of the dispersed bimetallic complex on the graphene oxide, as known as GOCuNP, surface was carried out by the cyclic voltammetry technique. The graphite paste electrode modified with GOCuNP was successfully applied in the detection of hydrazine, presenting limit of detection of 1.58 × 10–6 mol L−1 at concentration range of 1.00 × 10–5 to 5.00 × 10–3 mol L−1 of hydrazine, being so the proposed bimetallic complex formed can be considered as a potential candidate for the manufacturing of electrochemical sensors for hydrazine detection.
        4,500원
        50.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most recently, graphene-related composite-modified electrode surfaces are been widely employed to improve surface interactions and electron transfer kinetics. Hydrothermally prepared strontium pyro niobate (SPN) and reduced graphene oxide/ strontium pyro niobate (RGOSPN) nanostructures reveal excellent morphology. X-ray diffraction analysis of SPN and RGOSPN agree with standard data. Thermogravimetry–differential scanning calorimetry analyses show that RGOSPN has higher thermal stability than SPN. In addition, from the polarization–electric field (P–E) loop measurements, the estimated value of remnant polarization (Pr) and coercive electric field (Ec) of SPN are 0.039 μC cm−2 and − 2.90 kV cm−1 and that of RGOSPN nanocomposite are 0.0139 μC cm−2 and − 2.04 kV cm−1. Cyclic voltammetry measurements show that RGOSPN nanocomposite manifests the possibility of electrochemical reversibility beyond long cycles without change in performance. The redox cycle reveal that RGOSPN can be used as part of a composite electrode for hybrid capacitors dynamic conditions. Moreover, the specific capacitance of SPN and RGOSPN was calculated using galvanostatic charge–discharge (GCD) technique. The observed energy density of 9.1 W h kg−1 in RGOSPN is higher when compared with previous reported values.
        4,800원
        51.
        2021.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphene, a new material with various advantageous properties, has been actively used in various fields in recent years. Applications of graphene oxide are increasing in combination with other materials due to the different properties of graphene oxide, depending on the number of single and multiple layers of graphene. In this study, single-layer graphene oxide and multi-layer graphene oxide are spray coated on polystyrene, and the physicochemical properties of the coated surfaces are characterized using SEM, Raman spectroscopy, AFM, UV-Vis spectrophotometry, and contact angle measurements. In singlelayer graphene oxide, particles of 20 μm are observed, whereas a 2D peak is less often observed, and the difference in surface height increases according to the amount of graphene oxide. Adhesion increases with an increase in graphene oxide up to 0.375 mg, but decreases at 0.75 mg. In multi-layer graphene oxide, particles of 5 μm are observed, as well as a 2D peak. According to the amount of graphene oxide, the height difference of the surface increases and the adhesive strength decreases. Both materials are hydrophilic, but single-layer graphene oxide has a hydrophilicity higher than that of multi-layer graphene oxide. We believe that multi-layer graphene oxide and single-layer graphene oxide can be implemented based on the characteristics that make them suitable for application.
        4,000원
        52.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, Ni nanoparticle supported by graphene oxide (GO) (Ni-GO) is successfully synthesized through hydrothermal synthesis and calcination, and Cr(VI) is extracted from aqueous solution. The morphology and structure of Ni- GO composites are characterized by scanning electron microscopy (SEM), trans mission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HRTEM) and XRD confirms the high dispersion of Ni nanoparticle after support by GO. Loading Ni on GO can obviously enhance the stability of Ni-GO composites. It can be calculated from TGA that the mass percentage of Ni is about 60.67%. The effects of initial pH and reaction time on Cr(VI) removal ability of Ni-GO are investigated. The results indicate that the removal efficiency of Cr(VI) is greater than that of bared GO. Ni-GO shows fast removal capacity for Cr(VI) (<25 min) with high removal efficiency. Dynamic experiments show that the removal process conforms to the quasi-second order model of adsorption, which indicates that the rate control step of the removal process is chemical adsorption. The removal capacity increases with the increase of temperature, indicating that the reaction of Cr(VI) on Ni-GO composites is endothermic and spontaneous. Combined with tests and characterization, the mechanism of Cr(VI) removal by rapidly adsorption on the surface of Ni-GO and reduction by Ni nanoparticle is investigated. The above results show that Ni-GO can be used as a potential remediation agent for Cr(VI)-contaminated groundwater.
        4,000원
        53.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Here, Zn ferrite is synthesized along with reduced graphene oxide (rGO) by a facile one-step hydrothermal method. The difference between the synthesized nanocomposites with those in other reported work is that the reaction conditions in this work are 160 oC for 12 h. The synthesized products are characterized by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and attenuated total reflection. Further, the adsorption property of rGO–Zn ferrite (rGZF) nanocomposite is studied after confirming its successful synthesis. The adsorption capacity of rGZFs toward rhodamine B (RB) is ˃ 9.3 mg/g, whereas that of bare ZF nanoparticles is 1.8 mg/g in aqueous media. The efficiencies of rGZF and bare ZF to remove RB are 99 % and 20 %, respectively. Employing rGZF, 60 % of RB is decomposed within 5 min. The kinetic study reveals that the adsorption process of removing RB by bare Zn ferrite follows pseudo-firstorder kinetics. However, after zinc ferrite is incorporated with rGO, the kinetics changes to pseudo-second-order. Furthermore, the Langmuir isotherm is accomplished by the adsorption process employing rGZF, indicating that a monolayer adsorption process occurs. The thermodynamic parameters of the process are also calculated.
        4,000원
        57.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        물 공급은 늘어나는 담수 수요와 다르게 줄어들고 있다. 담수의 수요를 충당하기 위해서 나노여과법은 가장 효율 적이고 경제적인 방법이라고 할 수 있다. 해수담수화를 위한 나노여과법의 일반적인 방법으로는 나노여과 멤브레인을 이용한 역삼투압 방식이다. 하지만 기존의 멤브레인들은 주요 특성인 안정성, 경제성, 그리고 살균 및 방오특성이 부족하다. 기존의 나노여과 멤브레인을 향상시키기 위해서 친수성과 방오성이 높은 흑연 산화물이 가장 향상성이 높으며 널리 연구되고 있는 재료이다. 멤브레인 변형은 다른 레이어에 적용될 수 있다. 얇은 막으로 이루어진 멤브레인은 다른 세 레이어로 구성되어 있 다, 표면의 폴리아미드 레이어, 기공 레이어, 그리고 전체적인 구조를 구성하는 지원 직물이다. 정삼투압 토한 에너지 효율적 인 해수담수화 방식이지만 효율이 생물 오염 때문에 떨어진다. 산화그래핀 결합은 향균 기능을 향상할 수 있으며 멤브레인 표면에 바이오필름 생성을 억제할 수 있다. 압력지연삼투는 해수에서 청정에너지를 발전시키는 최고의 방법 중 하나이다. 멤 브레인의 생물 오염은 합성 폴리머 멤브레인의 합성 레이어에 산화 그래핀을 합성하여 줄일 수 있다. 나노여과 멤브레인을 개량하는 여러 연구가 각자의 장단점을 가지고 이루어지고 있다. 이 보고서는 나노여과 멤브레인의 개량, 성질, 그리고 성능 에 대해 논의한다.
        5,400원
        60.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this work is to investigate the ability of a new functionalized graphene oxide 3-amino-5-phenylpyrazole (F-GO) in the adsorption and removal of Hg2+ from aqueous solution. Both untreated graphene oxide (GO) and F-GO were characterized using FT-IR, EDX, FE-SEM, XRD and TGA analysis. The effects of three operational variables (pH, adsorbent dose and initial metal ion concentrations) on Hg2+ adsorption capacity of F-GO were investigated by central composite design. This technique aims to find a simple way to optimize the adsorption process and to analyze the interaction between the significant parameters. A quadratic model suggested for the analysis of variance found that the adsorption of metal ions heavily depend upon pH of the solution. The adsorption mechanism has been determined by pseudo-first-order kinetic models and the adsorption behavior was modeled by Freundlich isotherm. Results demonstrated that the adsorption capacities of F-GO for removal of Hg2+ were generally higher than those of GO, which is attributed to a decrease in the agglomeration of graphene layers due to the presence of amino-functional moieties with their bulky phenyl groups. Thermodynamic data indicated that the functionalization significantly affects the thermostability of the GO precursor materials. The desorption study demonstrated favorable regenerability of the F-GO adsorbent, even after three adsorption–desorption cycles.
        4,900원
        1 2 3 4 5