검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 26

        1.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-Fe alloys (CFAs) are much anticipated for use in electrical contacts, magnetic recorders, and sensors. The low cost of Fe has inspired the investigation of these alloys as possible replacements for high-cost Cu-Nb and Cu-Ag alloys. Here, alloys of Cu and Fe having compositions of Cu100-xFex (x = 10, 30, and 50 wt.%) are prepared by gas atomization and characterized microstructurally and structurally based on composition and powder size with scanning electron microscopy (SEM) and X-ray diffraction (XRD). Grain sizes and Fe-rich particle sizes are measured and relationships among composition, powder size, and grain size are established. Same-sized powders of different compositions yield different microstructures, as do differently sized powders of equal composition. No atomic-level alloying is observed in the CFAs under the experimental conditions.
        4,000원
        2.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the reduction kinetics and behaviors of oxides in the water-atomized iron powder have been evaluated as a function of temperature ranging 850-1000˚C in hydrogen environment, and compared to the reduction behaviors of individual iron oxides including Fe2O3, Fe3O4 and FeO. The water-atomized iron powder contained a significant amount of iron oxides, mainly Fe3O4 and FeO, which were formed as a partially-continuous surface layer and an inner inclusion. During hydrogen reduction, a significant weight loss in the iron powder occurred in the initial stage of 10 min by the reduction of surface oxides, and then further reduction underwent slowly with increasing time. A higher temperature in the hydrogen reduction promoted a high purity of iron powder, but no significant change in the reduction occurred above 950˚C. Sequence reduction process by an alternating environment of hydrogen and inert gases effectively removed the oxide scale in the iron powder, which lowered reduction temperature and/or shortened reduction time.
        4,000원
        3.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study on the fabrication of iron powder from forging scales using hydrogen gas has been conducted on the effect of hydrogen partial pressure, temperature, and reactive time. The mechanism for the reduction of iron oxides was proposed with various steps, and it was found that reduction pattern might be different depending on tem- perature. The iron content in the scale and reduction ratio of oxygen were both increased with increasing reactive time at 0.1atm of hydrogen partial pressure. On the other hand, for over 30 minutes at 0.5 atm of hydrogen partial pressure, the values were found to be almost same. In the long run, iron metallic powder was obtained with over 90% of iron content and an average size of its powder was observed to be about 100 µm.
        4,000원
        4.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Water-atomized pure iron powders were consolidated to disc-shaped samples at room temperature using HPT of 10 GPa up to 3 turns. The resulting microstructural size decreases with increasing strain and reaches a steady-state with nanocrystalline (down to ~250 nm in average grain size) structure. The water-atomized iron powders were deformed plastically as well as fully densified, as high as 99% of relative density by high pressure, resulting in effective grain size refinements and enhanced microhardness values.
        4,000원
        5.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current study, the effects of particle size on compaction behavior of water-atomized pure iron powders are investigated. The iron powders are assorted into three groups depending on the particle size; 20-45 , 75-106 , and 150-180 for the compaction experiments. The powder compaction procedures are processed with pressure of 200, 400, 600, and 800 MPa in a cylindrical die. After the compaction stage, the group having 150-180 of particle size distribution shows the best densification behavior and reaches the highest green density. The reason for these results can be explained by the largest average grain size in the largest particle group, due to the low plastic deformation resistance in large grain sized materials.
        4,000원
        6.
        2006.09 구독 인증기관·개인회원 무료
        Both plastic and elastic properties change dramatically from the beginning to the end of the compaction phase. Previous investigations have shown that powder transfer and high powder flow during initial compaction at low density affects the strength of the final component significantly. Investigated here are shear failure and elastic shear modulus in the low density range for hard metal powder and for pre-alloyed water atomized iron powder. Direct shear test equipment for sand and clay has been modified to measure the shearing properties of powder for an axial loading between 1 kPa and 500 kPa.
        7.
        2006.09 구독 인증기관·개인회원 무료
        Eventhough Fe-6.5 wt.% Si alloy shows excellent magnetic properties, magnetic components made of the alloy are not totally because of its extremely low ductility. In order to overcome this demerit of alloy, 6.7 wt.% Si alloy powders were produced by gas atomization and then post-processed to form magnetic cores. By doing so, the total core loss could be minimized by reducing both hysteresis and eddy current loss. From our experiments, we were able to achive a core loss of at 0.1 T and 50 kHz through proper processes and a permeability of 68 at low frequency.
        8.
        2006.09 구독 인증기관·개인회원 무료
        In this study, the pure iron powder was treated with aqueous phosphoric acid to produce phosphate insulating layer on the surface. After drying the powder, it was compacted in a mold with a diameter of 20mm at 800MPa. The powder compacts were then heat treated at for 1 hour. The results showed that insulated iron powder was obtained with uniform phosphate layer by chemical reaction. With increased amount of phosphate layer, the core loss and density of compacts were decreased. It was also found that the addition of ethyl alcohol during insulating reaction resulted in improved core loss value.
        9.
        2006.09 구독 인증기관·개인회원 무료
        Dimensional change of compact made from (Fe-Cu) prealloyed powder and copper powder compared to that of compact made from iron-copper elemental powder. The compact made from the prealloyed powder with a copper content of 7.18mass% which is nearly equal to its solution limit and copper powder showed only the large contraction in spite of penetration of liquid copper into grain boundary of the prealloyed powder. But the compact made from iron-copper elemental powder showed the large expansion in spite of same chemical composition with former case.
        10.
        2006.09 구독 인증기관·개인회원 무료
        We investigated the mechanism how the high green density can be provided during die lubricated warm compaction (WD). We observed and analyzed the densification processes of iron powders including different contents of an inner lubricant, and measured the lateral pressure at the die wall during WD in comparison with conventional compaction and warm compaction. As a result, the high density in WD was due to not only the particles-deformation enhanced by warming powders but also the particles-rearrangement promoted by reducing an amount of the inner lubricant rather than the die lubrication.
        11.
        2006.09 구독 인증기관·개인회원 무료
        The achievement of high density at reasonable cost is one of the major challenges of the P/M industry. One of the key factors contributing to the compressibility of a mix is the lubricant. New experimental lubricants enabling higher green density by conventional compaction or temperature-controlled die compaction were identified. The compaction and ejection characteristics of these new lubricants as measured with a fully instrumented lab press are presented and compared to that of conventional lubricants.
        12.
        2006.04 구독 인증기관·개인회원 무료
        Synthesis of iron nanopowder by room-temperature electrochemical reduction process of nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of h and V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.
        13.
        2006.04 구독 인증기관·개인회원 무료
        A high nitrogen PM tool steel has shown to have an excellent galling resistance due to the introduction of a high amount of a low friction phase predominantly consisting of VN. Tool making and heat treatment are according to standard procedures. An increase of tool life of more than two times compared to ordinary tool steels is found. Furthermore, the new low friction tool steel shows a potential for sintered parts with higher densities through the applica bility of increased compaction pressure or minimized lubricant amount.
        14.
        2006.04 구독 인증기관·개인회원 무료
        An apparatus measuring changes of various forces directly and continuously was developed by a way of direct touch between powders and transmitting force component, which can be used to study forces state of powders during warm compaction. Using the apparatus, warm compaction processes of iron-based powder materials containing different lubricants at different temperatures were studied. Results show that densification of the iron-based powder materials can be divided into four stages, in which powder movement changes from robustness to weakness, while its degree of plastic deformation changes from weakness to robustness.
        15.
        2006.04 구독 인증기관·개인회원 무료
        Densification behavior of iron powder under cold stepped compaction was studied. Experimental data were also obtained for iron powder under cold stepped compaction. The elastoplastic constitutive equation based on the yield function of Shima and Oyane was implemented into a finite element program (ABAQUS) to simulate compaction responses of iron powder during cold stepped compaction. Finite element results were compared with experimental data for densification, deformed geometry and density distribution.
        16.
        2006.04 구독 인증기관·개인회원 무료
        The filling property of the binder treated iron based powder made of atomized iron powder was compared with that of the one made of reduced iron powder. The latter one showed a better filling property than the former one, although the original reduced powder showed a worse flow rate. Changing the particle size distribution of the original atomized powder from wide to narrow like the original reduced iron powder, improved the filling property of the binder treated powder. As a result, the particle size distribution of the original iron powder was found to strongly affect the filling property of the binder treated powder.
        17.
        2006.04 구독 인증기관·개인회원 무료
        X-ray analysis on iron ores and reduced iron powders revealed that the main acid-insoluble substances were hexagonal and tetragonal quartz, another substances were sillimanite, alumina-silicate, an unnamed zeolite, all contained Si and Al. Their particle size was in the range of . Statistics analysis showed that the AIC for high-grade magnetite powder was ) during the latest five months. The predicting value for reduced iron powder should be 0.179%. However, the testing value for reduced iron powder was . The limited difference of 0.013% might imply rare pollution coming from the reduction and milling processes. The most important step for control AIC should be the separation process of iron ore powders.
        18.
        2006.04 구독 인증기관·개인회원 무료
        Seasonal changes have been recognized in particle characteristics and forming characteristics of iron powder with insulated coating for a compacted magnetic core because of its high hygroscopicity, due to its phosphate coating and resin binder additives. For this reason, particle characteristics and molding characteristics of the powder with diverse water absorbtivity have been studied. The result shows that the higher the volume of absorbed water, the worse the fluidity becomes, resulting in the reduction in both springback during the molding process and expansion reduction after the heat treatment. The requirement on dimension accuracy for the finished product can be satisfied with an additional drying process on the material powder, which contributes to maintain its water volume constant.
        20.
        1996.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        YIG 전구체 분말은 요소의 열분해반응을 이용한 균일침전법에 의해서 질산염으로부터 제조하였다. 침전은 철이온이 먼저 침전한 후 이트륨이온이 침전하는 과정으로 이루어졌다. YGI전구체 분말은 철산화물과 비정질로 구성되어 있으며 그 분말의 대략적인 화학식은 2.5Fe2O3.Y3(OH)9-2x(CO3)x.nH2O로 되어있다. YIG 전구체 분말의 열분해과정은 dehydration, 철산화물의 recrystallization, yttrium carbonate 및 yttrium oxide의 형성과 고상반응등 여러단계로 구성되어 있다. 열처리온도가 증가함에 따라 Y2O3와 Fe2O3의 고상반응에 의해 YFeO3 intermediate을 경유해서 YIG상이 형성됨을 확인하였다. 단일상의 YIG는 1200˚C에서 6시간 공기중에서 소성함에 의해서 얻을 수 있었다.
        4,000원
        1 2