검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,474

        61.
        2023.05 구독 인증기관·개인회원 무료
        In Korea, many characteristic component facilities and technologies in general experimental areas for non-radiative materials are owned by industry-academia research. Still, no characteristic analysis test technology has been developed for large, intermediate-level decommissioning waste emitted by neutron irradiation. Since Korea plans to decommission nuclear power plants in 2027, securing analysis technology for intermediate-level decommissioning waste is essential. Accordingly, the Korea Research Institute of Decommissioning (KRID) plans to secure an infrastructure (hot cell) to analyze the characteristics of intermediate-level dismantled waste. Afterward, we intend to stably dispose of the waste generated while decommissioning the current Gori Unit 1/Wolseong Unit 1 using the intermediatelevel dedicated hot cell. It aims to secure high-dose/high-radiation decommissioning waste handling technology through intermediate-level hot cells for the first time in Korea, supports domestic nucleardecommissioning projects, and secure and validate procedures related to material characteristics and nuclide analysis of intermediate-level waste. Furthermore, research on intermediate-level radioactive materials is expected to be carried out in cooperation with schools and research institutes.
        62.
        2023.05 구독 인증기관·개인회원 무료
        Level measurement of liquid radwaste is essential for inventory management of treatment system. Among various methods, level measurement based on differential pressure has many advantages. First, it is possible to measure the liquid level of the system regardless of liquid type. Second, as the instrument doesn’t need to be installed near the tank, there is no need to contact the tank when managing it. Therefore, workers’ radiation dose from the system can be decreased. Finally, although it depends on the accuracy, the price of the instrument is relatively low. With these advantages, in general, liquid radwaste level in a tank is measured using differential pressure in the treatment system. Not only the advantages described above, there are some disadvantages. As the liquid in the system is waste, it is not pure but has some suspended materials. These materials can be accumulated in tanks and pipes where the liquids move to come into direct contact with pneumatic pipes that are essential in differential pressure instruments. As a result, in case of a treatment using heat source, the accumulated materials may become sludge causing interference in pneumatic pipes. And this can change the pressure which also affects the level measured. In conclusion, in case of liquid storage tanks in which the situation cannot be checked, the proficiency of an operator becomes important.
        63.
        2023.05 구독 인증기관·개인회원 무료
        For the deep geological repository, engineering barrier system (EBS) is installed to restrict a release of radionuclide, groundwater infiltration, and unintentional human intrusion. Bentonite, mainly used as buffer and backfill materials, is composed of smectite and accessory minerals (e.g. salts, silica). During the post-closure phase, accessory minerals of bentonite may be redistributed through dissolution and precipitation due to thermal-hydraulic gradient formed by decay heat of spent nuclear fuel and groundwater inflow. It should be considered important since this cause canister corrosion and bentonite cementation, which consequently affect a performance of EBS. Accordingly, in this study, we first reviewed the analyses for the phenomenon carried out as part of construction permit and/or operating license applications in Sweden and Finland, and then summarized the prerequisite necessary to apply to the domestic disposal facility in the future. In previous studies in Sweden (SKB) and Finland (POSIVA), the accessory mineral alteration for the post-closure period was evaluated using TOUGHREACT, a kind of thermal-hydro-geochemical code. As a result of both analyses, it was found that anhydrite and calcite were precipitated at the canister surface, but the amount of calcite precipitate was insignificant. In addition, it was observed that precipitate of silica was negligible in POSIVA and there was a change in bentonite porosity due to precipitation of salts in SKB. Under the deep disposal conditions, the alteration of accessory minerals may have a meaningful influence on performance of the canister and buffer. However, for the backfill and closure, this is expected to be insignificant in that the thermal-hydraulic gradient inducing the alteration is low. As a result, for the performance assessment of domestic disposal facility, it is confirmed that a study on the alteration of accessory minerals in buffer bentonite is first required. However, in the study, the following data should reflect the domestic-specific characteristics: (a) detailed geometry of canister and buffer, (b) thermal and physical properties of canister, bentonite and host-rock in the disposal site, (c) geochemical parameters of bentonite, (d) initial composition of minerals and porewater in bentonite, (e) groundwater composition, and (f) decay heat of spent nuclear fuel in canister. It is presumed that insights from case studies for the accessory mineral alteration could be directly applied to the design and performance assessment of EBS, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
        64.
        2023.05 구독 인증기관·개인회원 무료
        Spent nuclear fuel temporary storage in South Korea is approximately 70% of total storage capacity as of the 4th quarter of 2022 amount is stored. In addition, according to the analysis of the Korean Radioactive Waste Society, saturation of nuclear power plant temporary storage is expected sequentially from 2031, and accordingly, the need for high-level radioactive waste disposal facilities has emerged. Globally, after the conclusion of the EU Taxonomy, for nuclear energy in order to become an ecofriendly energy, it is necessary to have a high-level radioactive waste disposal site and submit a detailed operation plan for high-level radioactive waste disposal site by 2050. Finland and Sweden have already received permission for the construction of high-level radioactive waste disposal facilities, and other countries, such as Switzerland, Japan, the United States, and Canada, are in the process of licensing disposal facilities. In order to establish a repository for high-level radioactive waste, the performance and safety analysis of the repository must be conducted in compliance with regulatory requirements. For safety analysis, it needs a collection of arguments and evidence. and IAEA defined it as ‘Safety case’. The Systematic method, which derives scenarios by systematizing and combining possible phenomena around the repository, is widely used for developing Safety case. Systematic methods make use of the concept of Features, Events and Processes (FEP). FEP identifies features that affect repository performance, events that can affect a short period of time, and processes that can have an impact over a long period of time. Since it is a characteristic of the Systematic method to compose a scenario by combining these FEP, the Systematic method is the basic premise for the development of FEP. Completeness is important for FEP, and comprehensiveness is important for scenarios. However, combining all the FEP into one scenario is time-consuming and difficult to ascertain the comprehensiveness of the scenario. Therefore, an Integrated FEP list is being developed to facilitate tracking between FEP and scenarios by integrating similar FEP. In this study, during the integrated FEP development process, a method for utilizing experts that can be used for difficult parts of quantitative evaluation and a quantitative evaluation process through the method were presented.
        65.
        2023.05 구독 인증기관·개인회원 무료
        Bentonite, a material mainly used in buffer and backfill of the engineering barrier system (EBS) that makes up the deep geological repository, is a porous material, thus porewater could be contained in it. The porewater components will be changed through ‘water exchange’ with groundwater as time passes after emplacement of subsystems containing bentonite in the repository. ‘Water exchange’ is a phenomenon in which porewater and groundwater components are exchanged in the process of groundwater inflow into bentonite, which affects swelling property and radionuclide sorption of bentonite. Therefore, it is necessary to assess conformity with the performance target and safety function for bentonite. Accordingly, we reviewed how to handle the ‘water exchange’ phenomenon in the performance assessment conducted as part of the operating license application for the deep geological repository in Finland, and suggested studies and/or data required for the performance assessment of the domestic disposal facility on the basis of the results. In the previous assessment in Finland, after dividing the disposal site into a number of areas, reference and bounding groundwaters were defined considering various parameters by depth and climate change (i.e. phase). Subsequently, after defining reference and bounding porewaters in consideration of water exchange with porewater for each groundwater type, the swelling and radionuclides sorption of bentonite were assessed through analyzing components of the reference porewater. From the Finnish case, it is confirmed that the following are important from the perspective of water exchange: (a) definition of reference porewater, and (b) variations in cation concentration and cation exchange capacity (CEC) in porewater. For applying items above to the domestic disposal facility, the site-specific parameters should be reflected for the following: structure of the bedrock, groundwater composition, and initial components of bentonite selected. In addition, studies on the following should be required for identifying properties of the domestic disposal site: (1) variations in groundwater composition by subsurface depth, (2) variations in groundwater properties by time frame, and (3) investigation on the bedrock structure, and (4) survey on initial composition of porewater in selected bentonite The results of this study are presumed to be directly applied to the design and performance assessment for buffer and backfill materials, which are important components that make up the domestic disposal facility, given the site-specific data.
        66.
        2023.05 구독 인증기관·개인회원 무료
        Currently, there are 25 nuclear power plants (NPPs) in operation in Korea, including 22 pressurized water reactors (PWRs) and three pressurized heavy water reactors (PHWRs). Two NPPs, including Kori Unit 1 and Wolsong Unit 1, are permanently shut down and awaiting decommissioning. If Kori Unit 2, which is expected to be permanently shut down soon, is included, the number of decommissioning NPPs will be increased to three. Spent fuels (SFs) are continuously generated during the NPP operation, which are stored in an SF storage pool in NPPs to cool down the decay heat emitted from SFs. For safe NPP operation, SFs must be regarded as waste, and a disposal site must be selected to isolate SFs. However, an appropriate site has yet to be selected in Korea. SFs contain long-lived nuclides with a high specific activity. For disposal, it is important to characterize the nuclides in the fuels and delay the migration of the nuclides to the environment when SFs are placed in a future disposal facility. If the disposal container is broken, the nuclides in the fuels escape from the filling material, such as bentonite. These escaped nuclides are dissolved in groundwater and migrate to the surface of the earth. Thus, it is possible to assess the radiological impact, such as the exposure dose during and after the disposal, if the types and characteristics of nuclides in SFs are known. This study investigated the nuclides in SFs and identified exposure scenarios that may occur in the disposal process of SFs and migration characteristics when the nuclides leak into groundwater to propose a dose assessment methodology for workers and the public.
        67.
        2023.05 구독 인증기관·개인회원 무료
        As Korea has relatively small land area and large population density compared to other countries considering the DGD concept such as Finland and Sweden, improvements of disposal efficiency in the viewpoint of the disposal area might be needed for the current disposal system to alleviate the difficulties of site selection for the HLW repository. In this research, we conduct a numerical investigation of the disposal efficiency enhancement for a high-level radioactive waste (HLW) repository through three design factors: decay heat optimization, increased thermal limit of buffer, and double-layer concept. In the optimized decay heat model, seven SNFs with the maximum and minimum decay heat depending on actual burn-up and cooling time are iteratively combined in a canister. Thermal limit of buffer is assumed as 100°C and 130°C for reference and high-efficiency repository concepts, respectively. By implementing an optimized decay heat model and a single-layer concept with a thermal limit of buffer set at 100°C, the disposal efficiency increases to 2.3 times of the improved Korean Reference disposal System (KRS+). Additionally, incorporating either an increased thermal limit of buffer to 130°C or a double-layer concept leads to a further 50% improvement in disposal efficiency. By integrating all three design factors, the disposal efficiency can be enhanced up to five times that of the KRS+ repository. Our analysis of rock mass stability reveals that increasing the thermal limit of buffer can generate rock spalling failure in a wider area. However, when accounting for the effect of confining stress by swelling of buffer and backfill using the Mohr-Coulomb failure criteria, the rock mass failure only occurred at the corner between the disposal tunnel and deposition hole when the thermal limit of buffer was increased and a single-layer concept was applied. The results given in this study can provide various options for designing the high-efficiency repository in accordance with the target disposal area and quality of the rock mass in the potential repository site.
        68.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기업 간 인수합병에서 피인수기업의 거래 가격이 인수기업의 기업 가치에 미치는 효과를 분석하였다. 이때 기업환경과 특성을 종합적으로 고려하기 위하여 산업 내 경쟁 수준과 피인수기업의 이종 산업 여부 등 두 가지 조절변수를 제안하였다. 본 연구의 모형을 검증하기 위하여 SDC Platinum에서 미국기업의 인수합병 관련 데이터를 수집하였고, 기업 관련 데이터는 WRDS Compustat에서 수집하였다. 2014년부터 2019년까지의 기 간을 대상으로 최종적으로 309개 기업에 대한 총 695건의 M&A 관련 데이터를 표본으로 선정하였다. 분석 결 과, 인수합병 시 거래 가격은 인수기업의 미래가치에 부정적인 효과를 미치는 것으로 나타났다. 그러나 인수기업 이 속한 산업 내 경쟁 수준이 높을수록 이러한 효과는 긍정적인 방향으로 상쇄되었다. 특히 인수합병 대상이 이 종 산업에 속한 기업일 경우, 그러한 상쇄 효과는 더욱 강해지는 것으로 나타났다. 본 연구는 인수합병의 거래가 격이 인수기업의 미래가치에 유의한 영향을 미치는 동시에, 그 효과가 산업 내 경쟁수준과 피인수기업의 이종 산 업 여부에 따라 조절된다는 사실을 계량적으로 입증했다는 점에서 학술적 의의를 가진다.
        5,700원
        69.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기후변화로 인하여 해수면 상승이 발생하고 있고, 그로 인한 악영향에 대해 연안국을 비롯한 국제사회의 우려가 커지고 있다. 해수면 상승으로 해안선이 후퇴하고 섬등 해양지형물이 수몰되는 경우 그러한 해안선을 기점으로 설정된 연안국 관할해역 외측한계의 변경 가능성, 기존 해양경계획정조약의 개정 필요성, 섬 또는 암석이 암석 또는 수중암초로 변경됨에 따른 법적 지위의 변화 등 많은 국 제해양법적 쟁점을 발생시키고 있다. 이 논문에서는 해수면 상승이 국제해양법에 미치는 효과에 한정하여, 쟁점별로 소도서개발도상국, 세계국제법학회, 유엔 국제법위원회의 주장을 검토하고 유엔해양법협약의 해석론적 측면에서 해결방안을 제시하였다.
        4,500원
        70.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we examined the residual amounts of formaldehyde in hygiene products to determine the safety of these products in Gyeonggi-do. Formaldehyde is among the harmful substances that may remain within certain hygiene products. On the basis of an analysis of formaldehyde in a total of 222 items (6 disposable paper straws, 9 disposable paper napkins, 21 toilet papers, 13 disposable dishcloths, 16 disposable paper towels, 32 wet wipes for food service restaurants, 25 disposable cotton swabs, and 100 disposable diapers), we detected traces in three wet wipes for food service restaurants (1.87 to 4.45 mg/kg), which is approximately 9% to 22% of the standard level (20 mg/kg). We established that all the hygiene products assessed in the study met the individual standards for formaldehyde, thereby confirming that safe products are being distributed. In the standards and specifications for hygiene products, the formaldehyde test method is regulated for application with respect to three categories based on the type of product. The samples used in this study were of types for which method 1 or method 2 is applied, and the limits of detection, limits of quantification, linearity, and recovery rates were reviewed to verify the validity of each test method. When method 2 was applied, we experienced interference when performing analysis at a wavelength of 412 nm, which was associated with the influence of impurities in some samples of disposable cotton swabs and disposable diapers. Consequently, in these cases, the results were compared after analysis using method 1. By comparing the results obtained using method 2 with those obtained using method 1, the latter of which were unaffected by the interference of impurities, we were able to detect formaldehyde at low concentrations. These findings accordingly highlight the necessity to standardize the formaldehyde test method for future analyses.
        4,000원
        75.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Several countries have been operating radioactive waste disposal (RWD) programs to construct their own repositories and have used natural analogues (NA) studies directly or indirectly to ensure the reliability of the long-term safety of deep geological disposal (DGD) systems. A DGD system in Korea has been under development, and for this purpose a generic NA study is necessary. The Korea Atomic Energy Research Institute has just launched the first national NA R&D program in Korea to identify the role of NA studies and to support the safety case in the RWD program. In this article, we review some cases of NA studies carried out in advanced countries considering crystalline rocks as candidate host rocks for high-level radioactive waste disposal. We examine the differences among these case studies and their roles in reflecting each country’s disposal repository design. The legal basis and roadmap for NA studies in each country are also described. However because the results of this analysis depend upon different environmental conditions, they can be only used as important data for establishing various research strategies to strengthen the NA study environment for domestic disposal system research in Korea.
        6,900원
        76.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        담수의 염분화, 저지대 영토 상실 등 해수면 상승의 부정적 영향이 일부 국 가들과 거주민에게 생존을 위협할 정도로 가시화되고 있는 가운데, 이를 해결 하기 위한 국제법적 방법의 일환으로 기후변화와 국제법에 관한 소도서국 위원 회(Commission of Small Island States on Climate Change and International Law, 이하 COSIS)는 2022년 12월 국제해양법재판소에 유엔해양법협약상 기후변화에 대한 국가책임에 관한 권고적 의견을 요청하였다. 현재 유엔해양법협약은 해수면 상승을 포함한 기후변화 원인을 명시적으로 규율하는 조문을 가지고 있지 않다. 다시 말해, 국제법상 국가책임의 구성요소인 구속력 있는 국제의무와 이 와 관련된 행위규범을 유엔해양법협약 자체만으로는 확인하기 어렵다는 것이 다. 이에 이 논문에서는 COSIS에서 국제해양법재판소에 요청한 기후변화의 부 정적 현상에 대한 국가 책임의 권고적 의견과 관련하여 유엔해양법협약상 해양 환경보호를 위한 일반적 의무와 상당한 주의의무 등을 통해 유엔기후변화협약 등이 적용가능한지 살펴본다. 결론적으로 유엔해양법협약 제12부는 해양환경보호를 위한 일반적 의무를 당사국에게 부여하고 있고, 이 의무는 상당한 주의의무를 포함하여 협약 당사 국이 해수면 상승의 원인이 되는 온실가스 배출 등을 규제해야 하는 의무를 부 과하고 있다고 할 수 있다. 이러한 상당한 주의의무는 유엔해양법협약 제293조 와 함께 유엔기후변화협약을 참조할 수 있는 근거가 될 수 있어, 향후 국재해 양법재판소가 기후변화 및 해수면 상승 등에 대한 국가책임을 규명하는 근거 규정으로서 활용할 수 있을 것으로 판단된다. 그러나, 유엔해양법협약상 상당 한 주의의무는 본질상 각 국가의 여건과 상황에 따라 개별적으로 평가되고, 이 에 따라 요구되는 주의의무 정도가 달라지기 때문에, 향후 이러한 법적 문제를 해소하기 위해 관습국제법과 유엔기후변화협약상의 관련 연구가 더 이루어져 야 할 것으로 사료된다.
        6,000원
        77.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Adsorption of arsenic by graphene-based adsorbents is widely applied to remove arsenic from water and has become a promising technology. However, most of the reported studies were conducted at a relatively higher concentration of arsenic in As (V) oxidative form, whereas the As (III) is more difficult to remove from water and more toxic, which prompted us to conduct the study at a lower concentration of 1 ppm in As (III). A Facile and controlled synthesis of graphene-based metal/ metal oxide nanomaterials and adsorptive removal of aqueous As (III) is reported here. Adsorbents were characterized using spectroscopy (FTIR, XPS and Raman) and microscopy (TEM). The maximum uptake of arsenic obtained was 88.8% from the RGO-Fe3O4 composite among all the adsorbents. The pseudo-second-order model and Intra-particle mass transfer diffusion model were applied to determine the adsorption kinetics with varying contact time between the adsorbents and the As (III) in water to interact. Experimental results suggest that the adsorption of As (III) onto the adsorbents was a multi-step process involving external adsorption to the surface followed by diffusion to the interior. A simple spectrophotometric method also was used for the detection and quantification of As (III).
        4,200원
        78.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To understand the characteristics of low-level clouds (CLs), environmental variables are composited on each CL using individual surface observations and six-hourly upper-air meteorologies around the globe. Individual CLs has its own distinct environmental conditions. Over the eastern subtropical and western North Pacific Ocean in JJA, stratocumulus (CL5) has a colder sea surface temperature (SST), stronger and lower inversion, and more low-level cloud amount (LCA) than the climatology whereas cumulus (CL12) has the opposite characteristics. Over the eastern subtropical Pacific, CL5 and CL12 are influenced by cold and warm advection within the PBL, respectively but have similar cold advection over the western North Pacific. This indicates that the fundamental physical process distinguishing CL5 and CL12 is not the horizontal temperature advection but the interaction with the underlying sea surface, i.e., the deepening-decoupling of PBL and the positive feedback between shortwave radiation and SST. Over the western North Pacific during JJA, skyobscuring fog (CL11), no low-level cloud (CL0), and fair weather stratus (CL6) are associated with anomalous warm advection, surface-based inversion, mean upward flow, and moist mid-troposphere with the strongest anomalies for CL11 followed by CL0. Over the western North Pacific during DJF, bad weather stratus (CL7) occurs in the warm front of the extratropical cyclone with anomalous upward flow while cumulonimbus (CL39) occurs on the rear side of the cold front with anomalous downward flow. Over the tropical oceans, CL7 has strong positive (negative) anomalies of temperature in the upper troposphere (PBL), relative humidity, and surface wind speed in association with the mesoscale convective system while CL12 has the opposite anomalies and CL39 is in between.
        6,300원
        79.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Technology for high-level-waste disposal employing a multibarrier concept using engineered and natural barrier in stable bedrock at 300–1,000 m depth is being commercialized as a safe, long-term isolation method for high-level waste, including spent nuclear fuel. Managing heat generated from waste is important for improving disposal efficiency; thus, research on efficient heat management is required. In this study, thermal management methods to maximize disposal efficiency in terms of the disposal area required were developed. They efficiently use the land in an environment, such as Korea, where the land area is small and the amount of waste is large. The thermal effects of engineered barriers and natural barriers in a high-level waste disposal repository were analyzed. The research status of thermal management for the main bedrocks of the repository, such as crystalline, clay, salt, and other rocks, were reviewed. Based on a characteristics analysis of various heat management approaches, the spent nuclear fuel cooling time, buffer bentonite thermal conductivity, and disposal container size were chosen as efficient heat management methods applicable in Korea. For each method, thermal analyses of the disposal repository were performed. Based on the results, the disposal efficiency was evaluated preliminarily. Necessary future research is suggested.
        5,500원
        1 2 3 4 5