검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,153

        102.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim and originality of our current study are to use the original biomass (activated carbon) obtained by functionalizing waste banana peels (commonly found in Turkey) with acid in NaBH4 methanolysis and to examine its contribution to the hydrogen generation rate (HGR). Our study consisted of three stages. In the first stage, the optimum conditions were determined by examining the catalyst under parameters such as different acid types, different carbonization temperatures, and different carbonization times. Thus, based on the maximum HGR value, the optimum conditions were determined as H3PO4, 600 °C, and 40 min. In the second step, the effects of parameters such as acid concentration, NaBH4 concentration, catalyst amount, and temperature on HGR were investigated. As a result of methanolysis experiments (condition: catalyst amount: 100 mg, acid amount: 30%, NaBH4 concentration: 2.5%, temperature: 30 °C, carbonization temperature: 400 °C, and carbonization time: 40 min.), the maximum HGR value, the reaction completion time and activation energy were found as 65,625 mLmin− 1gcat−1, 0.233 min, and 4.56 kJ/mol, respectively. It was observed that the obtained activation energy was lower than that of some catalysts available in the literature. In addition, the structural and morphological examination of the banana peel (catalyst) with high HGR and low activation energy revealed that the acid functionalization process was successfully carried out.
        4,000원
        103.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermal management is significant to maintain the reliability and durability of electronic devices. Heat can be dissipated using thermal interface materials (TIMs) comprised of thermally conductive polymers and fillers. Furthermore, it is important to enhance the thermal conductivity of TIMs through the formation of a heat transfer pathway. This paper reports a polymer composite containing vertically aligned electrochemically exfoliated graphite (EEG). We modify the EEG via edge selective oxidation to decorate the surface with iron oxides and enhance the dispersibility of EEG in polymer resin. During the heat treatment and curing process, a magnetic field is applied to the polymer composites to align the iron oxide decorated EEG. The resulting polymer composite containing 25 wt% of filler has a remarkable thermal conductivity of 1.10 W m− 1 K− 1 after magnetic orientation. These results demonstrate that TIM can be designed with a small amount of filler by magnetic alignment to form an efficient heat transfer pathway.
        4,000원
        104.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen infrastructure, for instance, such as hydrogen stations, supply chain network, is important in society of hydrogen economy. Special alloy are frequently used to prevent the hydrogen embrittlement in hydrogen vehicles, semiconductor factories and so on. Because special alloy including Monel material has high strength and high hardness, it is known as the hard-to-cut or roll material. This paper aims to investigate the characteristics and safety on bearing and shaft, which consist of key parts of rolling unit, through structural analysis. As the results, it showed that the bearing was weaker than shaft. Further the bearing was safe up to 20.4 ton, which was about 2 times of maximum of roller reaction force in case of considering as static load. However, the bearing was safe up to 10.2 ton in case of considering as repeated load.
        4,000원
        105.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 Passiflora caerulea 추출물의 항산화 활성 및 멜라닌 생합성 억제 효과 측정을 통해 화장품 소재로서의 활용 가능성을 확인하고자 하였다. Passiflora caerulea 추출물은 70% 에탄올로 추출하 였고, TEAC assay를 이용한 ABTS radical 소거능을 측정하였다. 또한 Neutral red assay를 이용한 세포 생존율, DCF-DA를 통한 세포 내 ROS 생성 억제, 멜라닌 생합성 억제 효과를 측정하였다. 연구결과, Passiflora caerulea 추출물의 ABTS radical 소거능은 농도 의존적 소거활성이 확인되었으며, positive control(양성대조군)로 이용한 trolox와 0.1 mg/mL 농도에서는 유사한 radical 소거 활성을 확인하였다. CFDA를 통한 세포 내 활성산소종(ROS) 생성은 농도 의존적으로 억제되었고, B16F10 melanoma 세포에 대한 세포 독성은 나타나지 않았다. 또한 α-MSH로 유도된 멜라닌 생합성 억제 효과를 확인하였다. 따라 서 본 연구를 통해 Passiflora caerulea 추출물은 화장품 소재로서의 활용 가능성이 있는 것으로 판단된다.
        4,000원
        106.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        콘크리트 충전강관은 국부좌굴을 방지하고 내화성이 향상되기 때문에 건설현장에서 많이 적용되며 휨성능을 향상시 키기 위해 강관 내부에 철근을 보강하여 사용한다. 그러나 철근은 부식되며 내구성이 저하되기 때문에 이를 대신할 소재에 대 한 연구가 진행되고 있다. 탄소섬유보강근은 철근에 비해 경량이며 고강도와 내부식성이 우수하다는 이점이 있다. 그러나 임계 온도가 250℃로 철근의 임계온도인 538℃에 비해 현저히 낮기 때문에 내화피복이 필요하다. 따라서 열전달해석을 통해 탄소섬 유보강근을 사용하였을 때 온도분포를 확인하고 P-M상관도를 도출하여 적용 가능여부를 확인하고자 한다. 해석결과 내화성능을 확보하기 위해 콘크리트 피복두께 40mm, 뿜칠내화피복재 30mm를 적용하거나 콘크리트 피복두께 60mm, 뿜칠내화피복재 20mm 를 적용하면 3시간 내화성능을 만족하는 것으로 평가되었다.
        4,200원
        107.
        2022.10 구독 인증기관·개인회원 무료
        In liquid scintillation counting, sample radioactivity is analyzed by measuring photons emitted from counting vials. Quenching effect lowers photon intensity from samples, which leads to lower counting efficiency. So an appropriate quenching correction according to characteristics of samples is important. In this study, the quenching correction for H-3 analysis was conducted according to the characteristics of paper packaging material leached samples. The leached samples are made from H-3 leaching method which is in the process of development for H-3 contamination screening. There are several ways of quenching correction such as internal standard (IS) method, quench correction curve and triple-to-double coincidence ratio (TDCR) method, etc. For quench correction curve, quenched standard set, which has the same matrix as experimental samples, is needed to be prepared. Each leached sample, however, has different matrix and color depending on condition of leaching experiment, which means that it is not capable of preparing standard set having same matrix with the samples. In this study, the counting samples are used for plotting quench correction curve instead of quenched standard set. Spectral quench parameter of the external standard [SQP(E)] is used as quench indicating parameter (QIP). TDCR and counting efficiencies determined by IS method are used as counting efficiencies. The quench curve of TDCR versus SQP(E) has R2 = 0.55 and the curve of efficiency from IS method versus SQP(E) has R2 = 0.99. TDCR is known for approximate counting efficiency, however, TDCR as counting efficiency needs careful use for H-3 analysis of leached samples. The curve used efficiency from IS method is suitable for H-3 analysis of leached samples. In this study, the quench correction curve is prepared for H-3 analysis of leached samples of paper packaging material. SQP(E), TDCR and efficiency from IS method was used as parameters to plot the quench correction curve, and, the efficiency from IS method is suitable for H-3 analysis of the leached samples. The result of this study can be used for H-3 analysis of leached samples of paper packaging material.
        108.
        2022.10 구독 인증기관·개인회원 무료
        Considering the Fukushima nuclear accident and the marine discharge plan of contaminated (or treated) water, it is necessary a seafood monitoring system for radioactive material screening. Currently, radioactivity tests in seafood are conducting in Korea. Although current method using a HPGe detector can provide very low uncertainty in determining radioactivity, there is a limitation in that rapid inspection cannot be performed because of a time-consuming pretreatment process as well as long measurement time (typically 10,000 s). To overcome this limitation, we are developing an insitu inspection device, a kind of screening system, which can monitor the radioactivity in seafood in a near real-time basis. In this study, the actual seafood with a check source was measured to verify the reliability of the Monte Carlo simulation model. The detector used in the experiment was a 5-cm-thick polyvinyl toluene (PVT) plastic scintillator with a 0.5-cm-thick lead shield for background reduction. A Cs-137 check source was placed within seafood. The seafood used in the experiment was fishcake, raw oyster, and dried laver, which is the representative seafood of fish, shellfish, and seaweed. These three seafood products of the same size and shape as the manufacturing process were used to predict the performance realistically. We compared the energy spectrum of the Cs-137 check source obtained from measurements and simulations. The region of interest (ROI) around the Compton edge was set to reduce the influence of the background and electronic noise. The results showed that the measured and simulated spectrum were in good agreement.
        109.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive mixed waste (RMW) is containing radioactive materials and hazardous materials. Radioactive wastes containing asbestos are include in RMW. These wastes thus must be treated considering both radioactive and hazardous aspects. In this study, a high temperature melt oxidation system consisting of an electric arc furnace and a molten salt oxidation furnace has been developed for the treatment of of radioactive waste containing asbestos. A surrogate waste of the radioactive waste containing asbestos (content of asbestos: 13wt%) was treated in this system. It was melted and fabricated into a glass waste form in the system. Asbestos was not detected in this glass waste form. This means that the asbestos was converted to a glass component in the glass waste form. The waste form was homogeneous glass, and it had a high value of compressive strength (475.13 MPa). It was also confirmed through a leaching test (ANS 16.1) that the waste form had a high chemical durability (Leaching Index > 6). Based on these results, it is considered that the high temperature melt oxidation system will be utilized for the treatment of a significant amount of radioactive waste containing asbestos generated from decommissioning a nuclear power plant.
        110.
        2022.10 구독 인증기관·개인회원 무료
        The dismantlement of the Kori Unit 1 and Wolsong Unit 1 nuclear power plants is scheduled. Since about 40% of the cost of dismantling nuclear power plants is the cost of disposing of generated wastes, it is important to secure recycling technologies. Among them, low and intermediate level radioactive wastes are made of porous filters and adsorbent materials of ceramic foam to remove nuclides such as C-14, I, and Xe generated during nuclear dismantling. In order to remove a large amount of nuclides, physical properties such as a specific surface area and porosity of a ceramic foam filter are important, however when a heat treatment temperature is increased to increase the strength of the filter, the nuclides removal ability is reduced. In order to remove a large amount of nuclides, physical properties such as a specific surface area and porosity of a ceramic foam filter are important, however when a heat treatment temperature is increased to increase the strength of the filter, the nuclides removal ability is reduced. Therefore, in this study, the foam filter performance was improved by applying a sacrificial material to increase the specific surface area and porosity of the ceramic foam filter. The sacrificial material is burned out with polyurethane (PU) of the green filter before the heat treatment temperature to increase the strength of the ceramic foam filter so that it can be maintained as pores, thereby improving the specific surface area and porosity. The sacrificial materials and melting temperature (Tm) reviewed in this study were anthracite (530~660°C), PMMA (160°C), Cellulose acetate (260~270°C), and aluminum particle (660°C), and their effect on the manufacture of foam filters was studied by applying this. The specific surface part and porosity of the foam filter were improved when anthracite and aluminum particle were added, and PMMA and Cellulose acetate, which are relatively low temperature melting points, were burned out at a temperature lower than PU, and thus their physical properties were not greatly affected. The physical properties and specific surface part and porosity of ceramic foam filters manufactured using various sacrificial materials will be discussed.
        111.
        2022.10 구독 인증기관·개인회원 무료
        For the spent fuel modeling, the plastic model of the cladding used in FRAPCON uses the σ􀷥 = K􀟝̃􀯡 􁉂 􀰌􁈶 􀬵􀬴􀰷􀰯􁉃 􀯠 format. Strength coefficient (K), strain hardening exponent (n), strain rate sensitivity constant (m) are derived as the function of temperature. The coefficient m related to the strain rate shows dependence on the strain rate only in the α-β phase transition section, 1,172.5~1,255 K. But this is the analysis range of the FRAPTRAN code, which is an accident condition nuclear fuel behavior evaluation code. It does not apply to evaluate spent fuel. This coefficient in FRAPCON is used as a constant value (0.015) below 750 K (476.85°C), and at a temperature above 750 K, it is assumed that it is linearly proportional to the temperature without considering the strain rate dependence, also. In order to confirm the effect of strain rate, multiple test data performed under various conditions are required. However, since the strain rate dependence is not critical and test specimen limitation in the case of spent fuel, it is needed to replace with a new plastic model that does not include the strain rate term. In the new plastic model, the basic form of the Ramberg-Osgood equation (RO equation) is the same as ε􀷤 = 􀰙􀷥 􀮾 + 􀜭􀯥 􁉀􀰙􀷥 􀮾􁉁 􀯡􀳝. If the new variable α is defined as α = 􀜭􀯥􁈺􀟪􀯢/􀜧􁈻􀯡􀳝􀬿􀬵, this equation can be transformed into ε􀷤 = 􀰙􀷥 􀮾 + 􀟙 􀰙􀷥 􀮾 􁉀 􀰙􀷥 􀰙􀰬 􁉁 􀯡􀳝􀬿􀬵 . The procedure for expressing the stress-strain curve of the cladding with the RO equation is as follows. First, convert the engineering stress-strain into true stress-strain. Second, using a data analysis program such as EXCEL or ORIGIN, obtain the slope of the linear trend-line on the linear part and use it as the elastic modulus. Third, using the 0.2% offset method, find the yield point and the yield stress. Finally, using the solver function of EXCEL, find the optimal values of α and 􀝊􀯥 that minimize the sum of errors. The applicability of the suggested RO equation was evaluated using the results of the Zircaloy-4 plate room temperature tensile test performed by the KAERI and the Zircaloy cladding uniaxial tensile test results presented in the PNNL report. Through this, the RO equation was able to express the tensile test results within the uncertainty range of ±0.005. In this paper, the RO equation is suggested as a new plastic model with limited test data due to the test specimen limitation of spent fuel and its applicability is confirmed.
        112.
        2022.10 구독 인증기관·개인회원 무료
        A tensile test is performed to obtain the mechanical property data of the spent fuel cladding. In general, the elastic modulus, elongation, yield stress, tensile stress, etc. are obtained by axial tensile test of cladding attaching an extensometer. However, due to the limitation in the number of specimens for spent nuclear fuel that can be made, the ring tensile test (RTT) whose required length of the specimen is short is mainly performed. In the case of RTT, an extensometer or strain gauge cannot be attached because the gauge part of the specimen is formed around the cladding and is short. In addition, since a load is applied in the radial direction of the cladding, a curved portion of the circular cladding is spread out and becomes straight, and then the cladding is tensioned. For this reason, it is difficult to obtain the stress-strain curve directly from the RTT results. Isight, which is used to identify the optimization design parameters, was used to build an optimization process that minimizes the difference between the RTT and the analysis to estimate the material property. For this, the elastic modulus, plastic strain, and the radius of the RTT jig were taken as fixed variables. As variables, isotropic hardening data and plastic stress were taken. The objective function was taken as the minimization of the area difference of the load-displacement curve obtained from the tests and analysis, of the difference in the magnitude of the maximum reaction force, and of the difference in the location where the maximum reaction force occurred. Optimization workflow was configured in the following order. First, using the calculator component, plastic stress design variables were created. Next, ABAQUS was placed to perform analysis using design variables, and the reaction force or displacement was calculated. After that, the reaction force was calculated considering the 1/4 symmetry condition using the script component. After that, the data matching component performed quantitative comparison of test and analysis data. Finally, by utilizing the exploration component, the plastic stress design variable that minimizes the difference in the objective function was obtained by automatically changing six optimization algorithms. In this paper, the constructed optimization process and the obtained plastic stress by applying it to the SUS316 RTT results are briefly described. The established optimization process can be utilized to obtain mechanical property from the results of the cladding RTT of spent nuclear fuel or new material.
        113.
        2022.10 구독 인증기관·개인회원 무료
        Material balance evaluation is an important measure to determine whether or not nuclear material is diverted. A prototype code to evaluate material balance has been developed for uranium fuel fabrication facility. However, it is difficult to analyze the code’s functionality and performance because the utilization of real facility data related to material balance evaluation is very limited. It is also restricted to deliberately implement various abnormal situations based on real facility data, such as nuclear diversion condition. In this study, process flow simulator of uranium fuel fabrication facility has been developed to produce various process data required for material balance evaluation. The process flow simulator was developed on the basis of the Simulink-SimEvents framework of the MathWorks. This framework is suitable for batch-based process modeling like uranium fuel fabrication facility. It dynamically simulates the movement of nuclear material according to the time function and provides process data such as nuclear material amount at inputs, outputs, and inventories required for Material Unaccounted For (MUF) and MUF uncertainty calculation. The process flow simulator code provides these data to the material balance evaluation code. And then the material balance evaluation code calculates MUF and MUF uncertainty to evaluate whether or not nuclear material is diverted. The process flow simulator code can simulate the movement of nuclear material for any abnormal situation which is difficult to implement with real process data. This code is expected to contribute to checking and improving the functionality and performance of the prototype code of material balance evaluation by simulating process data for various operation scenarios.
        114.
        2022.10 구독 인증기관·개인회원 무료
        The nuclide management technology for separating high-heat generating/high-mobility/long-lived nuclides from high-level wastes based on the chemical reactions is under development. In order to secure the reliability of nuclear non-proliferation and to implement the effective safeguards, it is necessary to consider the safeguards from the conceptual design phase of the novel technologies. However, there was no experience and research on safeguards for the chemical reaction based nuclide management technology. In order to development the available monitoring techniques for the safeguards of nuclide management technology, the possible diversion scenarios were developed and the material flows of major nuclear materials were analyzed according to the various diversion strategies for each unit process in this study. The diversion strategies in this study is limited to the diversion of nuclear materials according to the change of operational parameters (temperature, chemical reagents, pressures, etc). The nuclear material distribution behaviors under the abnormal conditions were analyzed and compared with normal conditions using the HSC Chemistry. The results will be used to determine the proper signals and feasible techniques to monitor the abnormal operations.
        115.
        2022.10 구독 인증기관·개인회원 무료
        The Republic of Korea is implementing safeguards for domestic nuclear facilities through cooperation with the IAEA. But it is not to evaluate the material balance for the material unaccounted for, MUF in the bulk handling facility. Although the development of a material balance evaluation program is underway, there are no related regulations. The State Regulatory Authority, SRA is performing material balance evaluation, MBE on the facility based on the design information and material balance results of the facility. However, it is not possible to directly derive measurement uncertainty for the facility’s measurement equipment, which is an important variable of MBE. To solve this problem, it is trying to derive a method suitable for the domestic environment by investigating the some measurement uncertainty estimation methods and analyzing characteristics of them. In this study, the traditional measurement uncertainty estimation method, GUM method and GUM-S1 method were studied and the advantages and disadvantages were analyzed. Due to the problems mentioned above, the uncertainty quantification technique currently being used cannot be applied to the evaluation of the domestic material balance. Therefore, we are tying to apply them to the evaluation the domestic material balance through the above three methods or a combination of them appropriately. Through this continuing study, it is expected that it will be possible to present a plan to derive measurement uncertainty optimized for the domestic MBE environment.
        120.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An automated material handling system (AMHS) has been emerging as an important factor in the semiconductor wafer manufacturing industry. In general, an automated guided vehicle (AGV) in the Fab’s AMHS travels hundreds of miles on guided paths to transport a lot through hundreds of operations. The AMHS aims to transfer wafers while ensuring a short delivery time and high operational reliability. Many linear and analytic approaches have evaluated and improved the performance of the AMHS under a deterministic environment. However, the analytic approaches cannot consider a non-linear, non-convex, and black-box performance measurement of the AMHS owing to the AMHS’s complexity and uncertainty. Unexpected vehicle congestion increases the delivery time and deteriorates the Fab’s production efficiency. In this study, we propose a Q-Learning based dynamic routing algorithm considering vehicle congestion to reduce the delivery time. The proposed algorithm captures time-variant vehicle traffic and decreases vehicle congestion. Through simulation experiments, we confirm that the proposed algorithm finds an efficient path for the vehicles compared to benchmark algorithms with a reduced mean and decreased standard deviation of the delivery time in the Fab’s AMHS.
        4,000원