검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 754

        22.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, we investigated a modern combined processing technique for the synthesis of lightweight superhard composites based on boron–carbon. We used traditional B4C with precipitates of free graphite and Al powder as initial materials. In the first stage, the composites were fabricated by the self-propagating high-temperature synthesis (SHS) with the subsequent hot pressing of the compound. Further, by the disintegration and attrition milling, the ultrafine-grained powder was obtained. We used HCl and HNO3 acids for the chemical leaching of the powder to remove various impure compounds. At the last stage, a solid composite was obtained by the spark plasma sintering (SPS) method under nitrogen pressure. The main feature of this approach is to implement different synthesis techniques and chemical leaching to eliminate soft phases and to obtain superhard compounds from low-cost materials. The phases were studied by X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy. The composites compacted by the SPS method contained superhard compounds such as B13C2, B11.7C3.3, and c-BN. The fabricated composite has an ultrafine-grained microstructure. Using a Berkovich indenter, the following nanohardness results were achieved: B13C2 ~ 43 GPa, c-BN ~ 65 GPa (all in Vickers scale) along with a modulus of elasticity ranging between ~ 400 GPa and ~ 450 GPa.
        4,000원
        23.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Inorganic-organic composites find extensive application in various fields, including electronic devices and light-emitting diodes. Notably, encapsulation technologies are employed to shield electronic devices (such as printed circuit boards and batteries) from stress and moisture exposure while maintaining electrical insulation. Polymer composites can be used as encapsulation materials because of their controllable mechanical and electrical properties. In this study, we propose a polymer composite that provides good electrical insulation and enhanced mechanical properties. This is achieved by using aluminum borate nanowhiskers (ABOw), which are fabricated using a facile synthesis method. The ABOw fillers are created via a hydrothermal method using aluminum chloride and boric acid. We confirm that the synthesis occurs in various morphologies based on the molar ratio. Specifically, nanowhiskers are synthesized at a molar ratio of 1:3 and used as fillers in the composite. The fabricated ABOw/epoxy composites exhibit a 48.5% enhancement in mechanical properties, similar to those of pure epoxy, while maintaining good electrical insulation.
        4,000원
        24.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/carbon composites are widely used in re-entry engineering applications thanks to their excellent mechanical properties at high temperatures, but they are easily oxidized in the oxygenated atmosphere. It is important to research their residual mechanical properties influenced by oxidation behaviour, in order to ensure the in-service safety. A microscale degradation model is proposed to predict the oxidation behavior based on the mass conservation and diffusion equations, the derived equivalent steady recession rate of composite is employed to evaluate the residual mechanical properties of the oxidized composite theoretically. A numerical strategy is proposed to investigate the oxidation mechanism of this composite. The differences in the degradation rate between the fiber and the matrix resulted in the steady state and an unchanged shape of the front. Residual mechanical properties of composite with three different domains of oxidation were simulated with a multiscale coupled model. The numerical results demonstrated that the mechanical properties of this composite decreased by 24–32% after oxidation for 30 min at 850 °C. Oxidation also caused the stress redistribution inside components, with the stress concentration diminishing their load-bearing capacity. The local areas of increased stress in the pyrocarbon matrix provided new ways for diffusion of oxygen into the pyrocarbon matrix and fibers.
        4,300원
        25.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a milled carbon nanofiber-reinforced composite paint was prepared to enhance the anti-corrosive properties of concrete structures. Shorter-length (40 μm) milled carbon fibers (MCFs) showed an increased viscosity relative to longer MCFs (120 μm) owing to their 2 weeks (the decrease was especially strong in the acid solution). A carbon nanotube (CNT)- reinforced composite paint showed similar results in uniform distribution in the epoxy resin. The latter showed a decrease in viscosity owing to agglomerative movement in the epoxy resin. The surface hardness and tensile strength of the composite paint linearly increased as the carbon nanofiber loading was increased by up to 7.2 wt% in the epoxy resin, and slowly decreased after soaking in a sulfuric acid or sodium hydroxide solution for to those of the MCFs, whereas CNTs dispersed in isopropyl alcohol (IPA) in advance and mixed with resin showed lower hardness values than those without dispersion in IPA at the same loading. The mechanical properties such as the Shore D hardness and tensile strength of the MCF-reinforced composite paint increased significantly, resulting in a slower surface degradation of the composite paint concrete in a sulfuric acid and sodium hydroxide solution.
        4,000원
        26.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this experimental work, a p-type c-Si (100) substrate with 8 × 8 × 2 mm dimension was taken for TiCN thin-film coating deposition. The whole deposition process was carried out by chemical vapor deposition (CVD) process. The Si substrate was placed within the CVD chamber at base pressure and process pressure of 0.75 and 500 mTorr, respectively, in the presence of TiO2 (99.99% pure) and C (99.99% pure) powder mixture. Later on, quantity of C powder was varied for different set experiments. The deposition of TiCN coating was carried out in the presence of N2– H2–TiCl4–CH3CN gas mixture and 600 ℃ of fixed temperature. The time for deposition was fixed for 90 min with 10 and 5 ℃ min− 1 heating and cooling rate, respectively. Later on, heat treatment process was carried out over these deposited TiCN samples to investigate the changing characteristics. The heat treatment was carried out at 800 ℃ within the CVD chamber in the absence of any gas flow rate. The morphological properties of heat-treated samples have been improved significantly, evidence is observed from SEM and AFM analyses. The structural analysis by XRD has been suggested, upgradation in crystallinity of the heat-treated film as it possessed with sharp and higher intensity peaks. Evidence has been found that the electrochemical properties are enhanced for heat-treated sample. Raman spectroscopy shows that the intensity of acoustic phonon modes predominates the optic phonon modes for untreated samples, whereas for heat-treated samples, opposite trends have been observed. However, significant degradation in mechanical properties for heat-treated sample has been observed compared to untreated sample.
        5,800원
        27.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to respond to environmental pollution, developed countries, including Korea, have begun to conduct research to utilize hydrogen energy. For mass transfer of hydrogen energy, storage as liquid hydrogen is advantageous, and in this case, the volume can be reduced to 1/800. As such, the transportation technology of liquefied hydrogen for ships is expected to be needed in the near future, but there is no commercialized method yet. This study is a study on the technology to test the performance of the components constituting the membrane type storage container in a cryogenic environment as a preparation for the above. It is a study to find a way to respond by analyzing in advance the problems that may occur during the shear test of adhesives. Through this study, the limitations of ISO4587 were analyzed, and in order to cope with this, the specimen was supplemented so that fracture occurred in the adhesive, not the adhesive gripper, by using stainless steel, a low-temperature steel, to reinforce the thickness. Based on this, shear evaluation was performed under conditions lowered to minus 243℃, and it was confirmed that the breaking strength was higher at cryogenic temperatures.
        4,000원
        28.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Boron carbide (B4C) is highly significant in the production of lightweight protective materials when added to aluminum owing to its exceptional mechanical properties. In this study, a method for fabricating Al-B4C composites using high-energy ball milling and directed energy deposition (DED) is presented. Al-4 wt.% B4C composites were fabricated under 21 different laser conditions to analyze the microstructure and mechanical properties at different values of laser power and scan speeds. The composites fabricated at a laser power of 600 W and the same scan speed exhibited the highest hardness and generated the fewest pores. In contrast, the composites fabricated at a laser power of 1000 W exhibited the lowest hardness and generated a significant number of large pores. This can be explained by the influence of the microstructure on the energy density at different values of laser power.
        4,000원
        29.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study aims to examine the correlation between microstructures and the mechanical properties of two highstrength API X70 linepipe steels with different specimen directions and Moaddition. The microstructure of the Mo-added steel has an irregularly shaped AF, GB matrix with pearlite because of the relatively large deformation in the non-recrystallization temperature region, while that of the Mo-free steel shows a PF matrix with bainitic microstructure. In the Mo-added steel, the M/A (martensite-austenite) in granular bainite (GB) and pearlite act as crack initiation sites with decreased upper shelf energy and an increased ductile to brittle transition temperature (DBTT). Regardless of Mo addition, all of the steels demonstrate higher strength and lower elongation in the T direction than in the L direction because of the short dislocation glide path and ease of pile-up at grain boundaries. In addition, the impact test specimens with T-L direction had a lower impact absorbed energy and higher DBTT than those with the L-T direction because the former exhibit shorter unit crack path compared to the latter.
        4,000원
        30.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Ag/WC electrical contacts were prepared via powder metallurgy using 60 wt% Ag, 40 wt% WC, and small amounts of Co3O4 with varying WC particle sizes. After the fabrication of the contact materials, microstructure observations confirmed that WC-1 had an average grain size (AGS) of 0.27 μm, and WC-2 had an AGS of 0.35 μm. The Ag matrix in WC-1 formed fine grains, whereas a significantly larger and continuous growth of the Ag matrix was observed in WC-2. This indicates the different flow behaviors of liquid Ag during the sintering process owing to the different WC sizes. The electrical conductivities of WC-1 and WC-2 were 47.8% and 60.4%, respectively, and had a significant influence on the Ag matrix. In particular, WC-2 exhibited extremely high electrical conductivity owing to its large and continuous Ag-grain matrix. The yield strengths of WC-1 and WC-2 after compression tests were 349.9 MPa and 280.7 MPa, respectively. The high yield strength of WC-1 can be attributed to the Hall–Petch effect, whereas the low yield strength of WC-2 can be explained by the high fraction of high-angle boundaries (HAB) between the WC grains. Furthermore, the relationships between the microstructure, electrical/mechanical properties, and deformation mechanisms were evaluated.
        4,000원
        31.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal additive manufacturing (AM) has transformed conventional manufacturing processes by offering unprecedented opportunities for design innovation, reduced lead times, and cost-effective production. Aluminum alloy, a material used in metal 3D printing, is a representative lightweight structural material known for its high specific strength and corrosion resistance. Consequently, there is an increasing demand for 3D printed aluminum alloy components across industries, including aerospace, transportation, and consumer goods. To meet this demand, research on alloys and process conditions that satisfy the specific requirement of each industry is necessary. However, 3D printing processes exhibit different behaviors of alloy elements owing to rapid thermal dynamics, making it challenging to predict the microstructure and properties. In this study, we gathered published data on the relationship between alloy composition, processing conditions, and properties. Furthermore, we conducted a sensitivity analysis on the effects of the process variables on the density and hardness of aluminum alloys used in additive manufacturing.
        4,000원
        32.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With a strive to develop light-weight material for automotive and aerospace applications, aluminum-based hybrid nanocomposites (AHNCs) were manufactured utilizing the compocasting approach in this study. Chopped carbon fibers (CFs) are reinforced along with different weight fractions of nanoclay (1–5%) in the matrix of AA6026 forming AHNCs. The AHNCs specimens were examined by microstructural analysis, mechanical characterization, fatigue, and corrosion strength as per ASTM guidelines. Electroless plating method is adopted for coating CFs with copper to improve the wettability with matrix. SEM pictures of manufactured composites reveal thin inter-dendritic aluminum grains with precipitate particle of eutectic at intergranular junctions, as well as nanoclay particles that have precipitated in the matrix. Tensile strength (TS) rises with inclusion of nanoclay up to a maximum of 212.46 MPa for 3% nanoclay reinforcement, after which the TS is reduced due to non-homogeneity in distribution, agglomeration and de-bonding of nanoparticles. Similarly, micro-hardness increases with addition of 3% nanoclay after which it decreases. Higher energy absorption was achieved with 3% nanoclay reinforced hybrid and a significant improvement in flexural strength was obtained. With addition of both CFs and nanoclay, the fatigue strength of the hybrid composite tends to increase due to flexible CFs and high surface area nanoclays which strengthen the grain boundaries until 3% addition. Addition of nanoclay lowers the corrosion rate with nanoclays filling the crevices and voids in the matrix.
        4,600원
        33.
        2023.05 구독 인증기관·개인회원 무료
        Compacted bentonite buffer blocks placed in the engineered barrier system for high-level nuclear waste disposal can undergo swelling, intrusion into rock fractures, and erosion with saturation. Bentonite erosion and intrusion can lead to bentonite mass loss via groundwater flow and can ultimately compromise the overall integrity of the disposal system. To ensure the long-term safety of deep geological disposal, it is essential to assess the hydro-mechanical interactions between the bentonite buffer and surrounding rock. In this study, the impact of bentonite erosion and intrusion on the mechanical properties of the jointed rock mass were assessed via elastic wave propagation measurements using the quasi-static resonant column test. Granite rock discs obtained from the Korea Underground Research Tunnel and Gyeongju bentonite were used to simulate jointed rock specimens with different bentonite intrusion conditions. Different degrees of bentonite intrusion were simulated by mixing bentonite and water to create bentonite paste and gel. The longitudinal and shear wave velocities under different normal stress levels were used to quantify the effects of bentonite intrusion on the mechanical characteristics of the rock joint. Complementary numerical analysis using the three-dimensional distinct element code (3DEC) was conducted to provide improved understanding of wave propagation within bentonite gouge-filled rock mass.
        34.
        2023.05 구독 인증기관·개인회원 무료
        For Korean nuclear fuel cycle project, it is necessary to design and evaluate the integrity of spent fuel storage. For the design and evaluation of spent fuel storage, it is necessary to evaluate the properties of various materials used in spent fuel storage. The materials previously considered in the design of nuclear power plants were limited to static properties and were listed in design and manufacturing code and standards. However, for the evaluation of the storage containers in scenarios such as transportation and events, dynamic material property evaluations are required. Research on the dynamic properties of materials is generally conducted in the fields of automotive and aerospace, and most of the studies are on metal materials under sheet conditions. Since the structural materials of the storage containers for used nuclear fuel are mostly composed of thick materials, consideration should be given to property evaluation methodology and quantitative comparison. In this study, the mechanical properties of stainless steel material with canister application were evaluated according to the strain rate, and the crack resistance evaluation was also performed. It was confirmed the changes in strength and crack resistance according to the increase in strain rate and observed differences in microstructural hardening behavior.
        36.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to increase the usability of PLA in tissue engineering, we tried to improve the hydrophobicity and low mechanical properties of PLA. The basic solutions were prepared by mixing 3, 5, and 7wt.% of PLA in a solution of chloroform and acetone in a volume ratio of 3:1. Several types of nanofiber mats were fabricated using a mixed solution in which 0.5, 1, and 3wt.% of PEO and PVAc, which are biodegradable polymers, were added to these solutions, respectively, through the SBS method. As a result, it was found that when the content of PEO increased, the diameter and surface state of nano fibers became uniform and the water contact angle significantly decreased, but it did not affect the tensile strength. In addition, the hydrophobicity of PLA was improved to hydrophilicity by mixing with PVAc, but the strain was greatly reduced.
        4,000원
        37.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        3D printing is widely used in product development and prototype manufacturing, and is expected to become universal across various industries with the development of 3D printing-related technologies. However, parts made by Fused Deposition Modeling(FDM) 3D printing using the commonly used stacking manufacturing process, show low tensile strength and hardness. The decreased mechanical properties of these parts limit their use as structural elements. In this study, we aim to investigate the relationship between ultrasonic treatment of PLA parts produced by FDM 3D printing and their mechanical properties. Specifically, we analyze the effects of ultrasonic annealing on the mechanical properties of PLA parts using the tensile test specimen.
        4,000원
        38.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Although the Ti–6Al–4V alloy has been used in the aircraft industry owing to its excellent mechanical properties and low density, the low formability of the alloy hinders broadening its applications. Recently, laser-powder bed fusion (L-PBF) has become a novel process for overcoming the limitations of the alloy (i.e., low formability), owing to the high degree of design freedom for the geometry of products having outstanding performance used in hightech applications. In this study, to investigate the effect of bulk shape on the microstructure and mechanical properties of L-PBFed Ti-6Al-4V alloys, two types of samples are fabricated using L-PBF: thick and thin samples. The thick sample exhibits lower strength and higher ductility than the thin sample owing to the larger grain size and lower residual dislocation density of the thick sample because of the heat input during the L-PBF process.
        4,000원
        39.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Renewed interest in the reinforced carbon graphite composites has intrigued the community in the advanced materials fields. In this work, we present a simple carbon nanofibers reinforced carbon graphite composites synthetic method by incorporating mixture of coal tar pitch, synthetic graphite, pitch coke and the dispersion liquid of carbon nanofibers via liquid-phase mixing process. The impact of carbon nanofiber utilization on the microstructures and mechanical properties of carbon graphite composites are studied systematically. The covalent surface modification of carbon nanofibers effectively improves its microstructure and thereby promotes the carbon graphite composites’ dispersion behavior. We propose that a small amount of carbon nanofibers could promote the carbonization process of carbon graphite composites, facilitating the densification of carbon graphite composites and reducing the undesired open porosity. The amount of 0.7 wt % of carbon nanofiber concentration allows the enhancement of bend and compressive strength of carbon graphite composites up to 36.50 MPa and 60.46 MPa, increased by 167.9% and 146.9% compared with the pure carbon graphite composite, respectively. Our findings can be rationalized due to the improvement in the mechanical strength of carbon graphite composites could be attributed due to pull-out of carbon nanofibers from the matrix and bridging effect across the crack pores within the matrix.
        4,200원
        40.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Poor mechanical properties and bacterial infection are the main problems faced by dental restorative resins in clinical use. In this study, graphene quantum dots (GQDs) grafted with imidazole groups and mesoporous silica (MSN) are co-filled in a dental resin to impart excellent antimicrobial activity and mechanical properties to the dental resin. The higher specific surface area of GQDs and MSN results in an increased contact area with the resin matrix, which enhances the strength of the dental composite resin. The introduction of GQDs significantly improves the antimicrobial activity of the resin. The inhibition efficiency of the composite resin against Streptococcus mutans reached 99.9% with the addition of GQDs at only 0.2 wt.%. When MSN and GQDs are co-filled, MSN interferes with the release of GQDs, thus reducing the antimicrobial activity of the dental resin but improving the cyto-compatibility. By reasonably adjusting the amount of GQDs and MSN, the dental composite resin can exhibit excellent antimicrobial properties, mechanical properties and cyto-compatibility at the same time.
        4,500원
        1 2 3 4 5