검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 57

        22.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        There are several manufacturing techniques for developing thermionic cathodes for vacuum ultraviolet(VUV) ionizers. The triple alkaline earth metal emitters(Ca-Sr-Ba) are formulated as efficient and reliable thermo-electron sources with a great many different compositions for the ionizing devices. We prepare two basic suspensions with different compositions: calcium, strontium and barium. After evaluating the electron-emitting performance for europium, gadolinium, and yttrium-based cathodes mixed with these suspensions, we selected the yttrium for its better performance. Next, another transition metal indium and a lanthanide metal neodymium salt is introduced to two base emitters. These final composite metal emitters are coated on the tungsten filament and then activated to the oxide cathodes by an intentionally programmed calcination process under an ultra-high vacuum(~10-6 torr). The performance of electron emission of the cathodes is characterized by their anode currents with respect to the addition of each element, In and Nd, and their concentration of cathodes. Compared to both the base cathodes, the electron emission performance of the cathodes containing indium and neodymium decreases. The anode current of the Nd cathode is more markedly degraded than that with In.
        4,200원
        23.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, porous Mo-5 wt% Cu with unidirectionally aligned pores is prepared by freeze drying of camphene slurry with MoO3-CuO powders. Unidirectional freezing of camphene slurry with dispersion stability is conducted at -25℃, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The green bodies are hydrogen-reduced at 750℃ and sintered at 1000℃ for 1 h. X-ray diffraction analysis reveals that MoO3- CuO composite powders are completely converted to a Mo-and-Cu phase without any reaction phases by hydrogen reduction. The sintered bodies with the Mo-Cu phase show large and aligned parallel pores to the camphene growth direction as well as small pores in the internal walls of large pores. The pore size and porosity decrease with increasing composite powder content from 5 to 10 vol%. The change of pore characteristics is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.
        4,000원
        26.
        2017.11 구독 인증기관·개인회원 무료
        In this study, mixed-matrix membranes (MMMs) containing MgO nanosheets (MgO-NSs) and AgBF4 in a comb copolymer matrix were successfully prepared for olefin/paraffin separation. The MgO-NSs, which were synthesized via a non-hydrothermal method, showed a large surface area with multi-mesopores. Two kinds of comb copolymers, POEM-g-PEGBEM and PHMEP-g-PEGBEM, were used as a matrix for dispersion of the MgO-NSs and AgBF4. The separation efficiency was enhanced by addition of MgO-NSs due to the dual-functionality. MgO-NSs resulted in the enhancement of the activity of silver through specific interaction and also led to increased diffusivity due to its mesoporous structure. The interactions among the MgO-NSs, silver ions, and polymer matrix were systematically characterized by using FT-IR, XPS, SAXS, and XRD analysis.
        27.
        2017.11 구독 인증기관·개인회원 무료
        PVC-g-POEM graft copolymer was synthesized for ultrafiltration (UF) membrane area and the effect of TTIP on the membranes was also explored via phase separation. Characterization was explored by FT-IR, 1H-NMR and FE-SEM and measured by cross-flow system. The interaction between copolymer and TTIP enhanced the water permeance because of increased surface pore size and porosity. Phase inversion process in 80 oC water bath resulted in decreased water permeance owing to the increased top selective layer, but increased BSA rejection. However, TTIP-treated membrane with 80 oC inversion showed decreased BSA rejection owing to TTIP dissolution in hot water. TTIP treatment and 80 oC inversion resulted in highly enhanced antifouling property. The best performance exhibited 338 LMH water permeance, 89.4% BSA rejection, and 91.9% flux ratio recovery.
        29.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The changes in the aroma and spoilage odor emitted from eleven ‘Hongro’ apples during ten weeks’ storage were investigated using six types of metal oxide semiconductor gas sensor arrays. The gas sensors used in the evaluation were sensitive to apple-emitted aroma or spoilage odor, and a high reproducibility of 5% relative standard deviation or less was confirmed. Significantly, the change in apple-emitted aroma or spoilage odor was easily distinguished by the optimal gas sensor and a significant correlation (r=0.992) between decay rate and sensitivity change was observed. The results of a principal component analysis of the signal patterns obtained by data standardization using the optimal gas sensor showed a clear classification between decayed sampler groups and undecayed sampler groups.
        4,000원
        30.
        2016.12 구독 인증기관 무료, 개인회원 유료
        CdSe/CdZnS core/shell/lignad 구조를 가지는 red quantum dot을 발광층으로 사용하여 indium tin oxide(양전 극) glass위에 molybdeum oxide (MoO3), Poly(9-vinylcarbazole)(PVK), CdSe/CdZnS quantum dot, Zinc Oxide (ZnO)을 순차적으로 스핀코팅을 하고, aluminium(Al)(음전극)을 진공 열증착을 통해 다층구조를 제작하여 연구를 진 행하였다. 본 연구에 사용된 quantum dot의 PL peak는 625 nm으로 관찰되었다. 제작된 소자는 약 7 V에서 발광하 기 시작하였으며, 이를 소자의 turn-on voltage로 판단하였다. 인가전압이 증가할수록 소자의 전류밀도와 휘도의 지수 함수적 증가를 관찰할 수 있었다. EL 스펙트럼의 peak는 11 V에서 627 nm이다가, 최대 동작전압인 19 V에서는 630 nm로 red shift 하였다. 소자의 최대 밝기는 210 cd/m2, 최대 전류밀도는 33 mA/cm2, 최대 전류효율은 0.5 cd/A로 측 정되었다.
        4,000원
        31.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-Mn과 Cu-Zn 촉매를 침전제로 다르게 하거나, 금속의 몰비율, 소성온도를 다르게 하여 공침법으로 제조하였고 CO산화반응을 수행하여 혼합산화물 촉매에서 Cu, Mn과 Zn의 영향 및 소성온 도가 미치는 영향을 조사하였다. 촉매의 물리·화학적 특성을 알아보기 위하여 XRD, N2 흡착 및 SEM 의 분석을 수행하였다. Na2CO3로 침전시켜 270℃로 소성하여 제조한 2Cu-1Mn 산화물 촉매가 저온에 서 CO 산화반응 활성이 가장 좋았으며 2Cu-1Mn 산화물 촉매는 43 m2/g으로 가장 높은 비표면적과 촉매 활성을 나타내었다. XRD로 촉매의 결정구조를 분석하였을 때 Cu0.5Mn2.5O4의 결정구조를 갖는 촉 매는 낮은 활성을 보였다. 270℃에서 소성한 촉매가 좋은 활성을 나타냈으며 Pt 촉매와 비교하여도 저 온에서 CO산화반응이 더욱 우수함을 알 수 있었다.
        4,000원
        32.
        2015.05 구독 인증기관·개인회원 무료
        TiO2 and SiO2 inorganic nanoparticles were synthesized with poly(oxyethylene methacrylate)(POEM) and blended with 1-methyl-3-propylimidazolium iodide(MPII), poly(ethylene glycol)(PEG), and iodine(I2) to prepare polymer electrolyte membranes for dye-sensitized solar cells(DSSC). The modified nanoparticles were prepared by the grafting of POEM to TiO2 and SiO2 nanoparticles and put into PEG, MPII and I2 to produce polymer electrolyte membranes. The specific interactions of PEG with the modified nanoparticles in addition to ionic liquid were confirmed by FT-IR spectroscopy and DSC, providing gel formation of electrolytes. The efficiency of DSSC employing TiO2-POEM/PEG/MPII/I2(3.3%) was slightly higher than that employing SiO2-POEM/PEG/MPII/I2(2.9%) due to the different ionic conductivity of electrolytes membrane.
        33.
        2015.05 구독 인증기관·개인회원 무료
        분리막 생물반응기(MBR)는 전통적인 수처리 방법과 비교하여 안정적인 수질확보, 처리부지 감소, 높은 유기물 제거 등의 장점으로 인하여 매우 널리 사용되고 있다. 그러나 긴 고형물 체류시간과 높은 미생물 농도로 인하여 종종 인제거에 제한이 있다. 전통적으로 인을 제거하기 위해 화학적 침전 방법이 가장 널리 사용되고 있으나 이는 과량의 응집제 주입으로 인한 비용 문제 및 대량의 슬러지 발생의 한계점을 가지고 있다. 반면 흡착공정은 상대적으로 운전이 쉽고 간단하며 슬러지 발생량을 현저히 줄일 수 있는 방법이다. 따라서 본 연구에서는 입상 금속산화물 흡착제를 개발하고 이를 이용하여 MBR처리수 내의 인을 제거하는데 적용하고 성능을 평가하였다. 본 연구는 환경부의 연구비(과제번호 2013001390002)를 지원받아 진행되었습니다.
        34.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, improvement in the conversion efficiency of silicon-based solar cells has been achieved by decreasing emitter doping concentration, because the lightly doped emitter can effectively prevent the recombination of electrons and holes generated by solar light irradiation. This type of emitter is very thin due to the low doping concentration, thus conductive materials (i.e., silver) used for front electrodes can easily penetrate the emitter during a firing process because of their large diffusivity in silicon. This results in junction leakage currents which might reduce cell efficiencies. In this study, Al2O3-coated Ag powders were synthesized by an ultrasonic spray pyrolysis method and applied to the conductive materials of the front electrode to control the junction leakage current. The Al2O3 shell obstructs the Ag diffusion into the emitter during the firing process. The powder is spherical with a core-shell structure and the thickness of the Al2O3 shell is tens of nanometers. Solar cells were fabricated using pure Ag powders or the Al2O3-coated Ag powder as front electrode materials, and the conversion efficiency and junction leakage current were compared to investigate the role of the Al2O3 shell during the firing processes.
        4,000원
        35.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The sol-gel method was used to prepare binary metal oxide (IrO2-RuO2) pH sensor. The electrodes that mole percent compositions (mol%) of IrO2 and RuO2 were 70:30 and 30:70 were selected. The characterizations of Nernstian response over pH range, response rate, interference on alkaline metals and reproducibility were investigated. Also the electroanalytical properties of these electrodes were evaluated in comparison with a commercial glass pH electrode. The composition of IrO2:RuO2 70:30 mol% was chosen as better electrode formulation. The electrode was not susceptible to the action of interfering ions such as Li+, Na+ and K+.
        4,000원
        36.
        2013.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Freeze drying of a porous Cu-Sn alloy with unidirectionally aligned pore channels was accomplished by using a composite powder of CuO-SnO2 and camphene. Camphene slurries with CuO-SnO2 content of 3, 5 and 10 vol% were prepared by mixing with a small amount of dispersant at 50˚C. Freezing of a slurry was done at -25˚C while the growth direction of the camphene was unidirectionally controlled. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green bodies were hydrogen-reduced at 650˚C and then were sintered at 650˚C and 750˚C for 1 h. XRD analysis revealed that the CuO-SnO2 powder was completely converted to Cu-Sn alloy without any reaction phases. The sintered samples showed large pores with an average size of above 100μm which were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores. The size of the large pores decreased with increasing CuO-SnO2 content due to the change of the degree of powder rearrangement in the slurry. The size of the small pores decreased with increase of the sintering temperature from 650˚C to 750˚C, while that of the large pores was unchanged. These results suggest that a porous alloy body with aligned large pores can be fabricated by a freeze-drying and hydrogen reduction process using oxide powders.
        4,000원
        37.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        무지개 빛을 내는 무기진주광택안료는, 내광성, 내용제성 및 내열성 등이 물리적 화학적 안정성이 우수하여 다양한 분야에서 응용되고 있다. 본 연구는 수열합성방법을 사용하여 마이카 티타니아에 파란색 코팅 안료인 염화코발트를 기본으로 화장품 안료로 사용되는 진주광택안료를 합성하였다. 코발트에 의한 안료의 색상을 보완하고자 코발트와 금속 염의 비를 달리하여 안료를 코팅하고, 이를 통해 금속염의 종류에 따라 다양한 색차값을 구현하는 진주광택 안료를 합성하였다. 코발트와 첨가된 금속 염 전구체의 조성비와, 금속 염의 종류에 따라 코팅 특성과 색상을 조절할 수 있었고, 안료의 다양한 색상변화 특성을 색차계를 통해 확인 하였다. 합성된 안료는 SPM, SEM, XRD, EDS 기기를 통해 특성을 분석하였다.
        4,200원
        38.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrochemical performances of an asymmetric hybrid capacitor were investigated using LiFePO4 as the positive electrode and active carbon fibers(ACF) as the negative electrode. The electrochemical behaviors of a nonaqueous hybrid capacitor were characterized by constant current charge/discharge test. The specific capacitance using LiFePO4/ACF electrode turned out to be 0.87F/cm2 and the unit cell showed excellent cycling performance. This hybrid capacitor was able to deliver a specific energy as high as 178 Wh/kg at a specific power of 1,068 W/kg.
        4,000원
        39.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.
        4,300원
        40.
        2009.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Inorganic oxide colloids dispersed in alcohol were applied to a stainless steel substrate to produce oxide coatings for the purpose of minimizing emissive thermal transfer. The microstructure, roughness, infrared emissive energy, and surface heat loss of the coated substrate were observed with a variation of the nano oxide sol and coating method. It was found that the indium tin oxide, antimony tin oxide, magnesium oxide, silica, titania sol coatings may reduce surface heat loss of the stainless steel at 300˚C. It was possible to suppress thermal oxidation of the substrate with the oxide sol coatings during an accelerated thermal durability test at 600˚C. The silica sol coating was most effective to suppress thermal oxidation at 600˚C, so that it is useful to prevent the increase of radiative surface heat loss as a heating element. Therefore, the inorganic oxide sol coatings may be applied to improve energy efficiency of the substrate as the heating element.
        4,000원
        1 2 3