검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        반도체 및 디스플레이 공정에서 배출되는 N2/NF3 혼합 가스 분리를 위한 폴리썰폰 중공사막 제조 연구를 수행하였다. 먼저 non-solvent induced phase separation (NIPS)와 vapor induced phase separation (VIPS) 혼합 공정을 이용하여 기체 투과성이 높은 고분자 중공사막을 제조하였다. 제조된 중공사막 표면에 PDMS(polydimethylsiloxiane)와 Teflon AF1600® 고 분자 소재를 이용하여 얇은 박막을 추가적으로 코팅하는 방법으로 기체 분리막을 완성하였다. 제조된 분리막은 코팅된 고분 자 소재의 기체 분리 특성에 따라 상이한 N2/NF3 분리 성능을 보여주었다. 특히 Teflon AF1600® 이 코팅된 중공사막의 경우 N2/NF3 분리 성능(> 14)을 보여주었고, N2 투과도는 4.5 GPU를 나타내었다. 상용 폴리썰폰 막과 비교해 볼 때, 투과도는 약간 감소하였지만 기체 선택도는 크게 증가하였다. 이런 특징은 N2/NF3를 분리하는 분리막 구조로써 큰 가능성을 지니는 것으로 판단된다. Abstract:
        4,000원
        2.
        2015.05 구독 인증기관·개인회원 무료
        NF3 기체는 반도체, 디스플레이 산업에서 cleaning 또는 etching 가스로 많이 이용되고 있다. 6대 온실가스에 속하지는 않으나 차기 온실가스로 지구온난화지 수도 이산화 탄소에 비해 17200배 높다. 최근 NF3를 분리 농축 회수에 있어서 고분자 분리막, 복합막등의 다양한 연구가 이루어지고 있다. 하지만 실제 공정설계, 공정 최적화를 이루기 위한 분리특성의 연구가 미비한 상태이다. 이에 따라 본 연구에서는 NF3와 N2, O2의 온도와 압력에 따른 투과특성을 확인하고, 혼합기체에서의 주입농도와 Stage-cut에 따른 농축농도와 회수율에 대하여 연구하였다.
        3.
        2015.05 구독 인증기관·개인회원 무료
        NF3 가스는 반도체산업 공정에서 클리닝과 에천트로서 사용되는 고가의 불소기반가스로써 높은 지구 온난화지수를 가지고 있다. 현재 국내에서 NF3 가스는 N2와 혼합된 형태로 추가 정제 과정 없이 대기 중으로 배출된다. 따라서 환경보호 및 높은 부가가치를 위해서 분리·정제를 통한 NF3 가스 재사용이 필요하다. 본 연구에서는 글리세롤과 아세톤을 첨가하여 NF3 분리용 Polysulfone 중공사막의 기공형태 변화를 관찰하였다. 그리고 PDMS, PTMSP, AF 등의 고분자를 지지체 표면에 농도별로 코팅하여 N2/NF3 투과성능을 비교하였다. PDMS, PTMSP, AF를 코팅한 중공사막에서 투과도는 각각 1.94, 6.79, 6.86 GPU를 나타냈고 선택도는 5.10, 2.53, 6.12로 측정되었다.
        4.
        2015.05 구독 인증기관·개인회원 무료
        본 연구는 N2/NF3 분리를 위해 다양한 상업용 고분자를 이용하여 최초로 실증적 N2/NF3 분리상한선을 정의하였고, 6FDA–DAM:DABA(3:2), Teflons AF 2400, PTMSP가 가장 우수한 분리성능을 보여주었다. 또한, Freeman이론에 기반한 이론적 N2/NF3 상한선을 결정하였고, 이를 통해 실증적 상한선의 타당성을 증명하였다. 마지막으로, N2/NF3 분리성능 향상을 위해, Matrimid® 5218에 ZIF-8을 혼합한 하이브리드 분리막을 개발하였다. 용매, 입자크기 및 리간드가 하이브리드 분리막의 N2/NF3 분리성능에 미치는 영향을 연구하였다.
        8.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        PFC (perfluorocompound) gases have an extremely high global warming potential (GWP). A study of the destruction of NF3, CF4 and SF6 gases emitted from the semiconductor industry was attempted by plasma power at 4.4 kW, 5.5 kW, 6.0 kW, 6.6 kW, 7.6 kW, 8.1 kW and 9.1 kW. As electric power increased, DRE (destruction and removal efficiency) of NF3, CF4 and SF6 was also increased. It was confirmed through experiment that the DRE of NF3 is 99% at 7.6 kW, 97% for CF4 at 9.14 kW and 100% for SF6 at 7.6 kW of plasma power. By-products formed by PFC destruction were mainly F2, SO2F2, NOx and CO gases. In addition, particulate matter was formed, and particle were proven to be AlF3.
        9.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        The decomposition of NF3 using only an electron beam, and an electron beam in the presence of hydrogen are assessedin terms of the destruction and removal efficiency (DRE, %). Experiments were conducted at a flow rate of 500LPM.The inlet concentration of NF3 in nitrogen gas was about 1,000ppm, and the concentration of hydrogen ranged from 1,500to 8,000ppm, respectively. Absorbed dose (kGy) and electric current ranged from 33.87 (5mA) to 203.21kGy (30mA).The results in this study indicate that the DRE increased about 35% with hydrogen addition at electric current 30mA.Additionally hydrogen gas played a significant role in the constituents of byproducts.
        10.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        Nitrogen trifluoride (NF3) has been used as a novel etching and cleaning gas in semiconductor industry. Recently, the many studies about NF3 decomposition have been performed due to high global warming potential (GWP : 17,000). In this study, the role of conditioning agents such as H2, O2, and H2O (water vapor) in the destruction of NF3 gas using electron-beam technology is assessed in terms of the destruction and removal efficiency (DRE, %). The inlet concentration of NF3 was 1,000 ppm and the concentration of conditioning agents ranged from 250 to 1,500 ppm respectively and electron beam current was 5 mA. From the result, the by-products of NF3 decomposition were NO, N2O, and HF.