검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the concept of an outrigger damper system with a damper added to the existing outrigger system has been developed and applied for dynamic response control of high-rise buildings. However, the study on the structural characteristics and design method of Outrigger damper system is in the early stages. In this study, a 50 story high - rise building was designed and an outrigger damper system with viscoelastic damper was applied for wind response control. The time history analysis was performed by using the kaimal spectrum to create an artificial wind load for a total of 1,000 seconds at 0.1 second intervals. Analysis of the top horizontal maximum displacement response and acceleration response shows that outrigger damper systems are up to 28.33% and 49.26% more effective than conventional outrigger systems, respectively. Also, it is confirmed that the increase of damping ratio of dampers is effective for dynamic response control. However, since increasing the damping capacity increases the economic burden, it is necessary to select the appropriate stiffness and damping value of the outrigger damper system.
        4,000원
        2.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The outrigger damper system is a structural system with excellent lateral resistance when a wind load occurs. However, research on outrigger dampers is still in its infancy. In this study, dynamic response control performance of damper is analyzed according to change of stiffness value and damping value of damper. To do this, a real-scale 3D model of 50 stories has been developed and the artificial wind load has been entered for dynamic analysis. Generally, the larger the damping value, the smaller the stiffness value is, the more effective it is to reduce the maximum displacement and acceleration response. However, the larger the attenuation value as the cost of construction increases, it is necessary to select appropriate stiffness and damping value when applying an outrigger damper.
        4,000원
        3.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand for skyscrapers is increasing worldwide. Until now, various lateral resistance structures have been used for lateral displacement control of high-rise buildings. An outrigger damper system has been introduced recently to improve lateral dynamic response control performance further. However, a study of outrigger damper system is yet to be sufficiently investigated. In this study, time history analysis was performed to investigate the control performance of an outrigger damper system of high-rise building under eccentric loading. To do this, an actual scale 3-dimensional tall building model with an outrigger damper system was prepared. The control performance of the outrigger damper system was evaluated by varying stiffness and damping values. On the top floor torsional angle response to the earthquake load, was greatly affected by damping value. And the displacement response was affected greatly by the stiffness value and damping value of damper system. In conclusion, it is necessary to select the proper damping and stiffness values of the outrigger damper system.
        4,000원
        4.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, an outrigger damper system has been proposed to reduce dynamic responses of tall buildings. However, a study on outrigger damper system is still in its early stages. In this study, time history analysis was performed to investigate the dynamic response control performance of outrigger damper. To do this, a actual scale 3-dimensional tall building model with outrigger damper system has been developed. El Centro earthquake was applied as an earthquake excitation. The control performance of the outrigger damper system was evaluated by varying stiffness and damping values. Analysis results, on the top floor displacement response to the earthquake load, was greatly effected by damping value. And acceleration response greatly was effected by stiffness value of damper system. Therefore, it is necessary to select that proper stiffness and damping values of the outrigger damper system.
        4,000원
        5.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the concept of damped outrigger system has been proposed for tall buildings. But, structural characteristics and design method of this system were not sufficiently investigated to date. In this study, the dynamic response control performance of outrigger damper has been analyzed. To this end, a simplified analysis model with outrigger damper system has been developed. Use the El Centro seismic(1940, NS) analysis was performed. Analysis results, on the top floor displacement response to the earthquake response, did not have a big effect. However, acceleration response control effect was found to be excellent. The increase of outrigger damper capacity usually results in the improved control performance. However, it is necessary to select that proper stiffness and damping values of the outrigger damper system because, the outrigger damper having large capacity is result in heavy financial burden.
        4,000원
        6.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Damped outrigger systems have been proposed as a novel energy dissipation system to protect tall buildings from severe earthquakes and strong wind loads. In this study, semi-active damping devices such as magnetorheological (MR) dampers instead of passive dampers are installed vertically between the outrigger and perimeter columns to achieve large and adaptable energy dissipation. Control performance of semi-active outrigger damper system mainly depends on the control algorithm. Fuzzy logic control algorithm was used to generate command voltage sent to MR damper. Genetic algorithm was used to optimize the fuzzy logic controller. An artificial earthquake load was generated for numerical simulation. A simplified numerical model of damped outrigger system was developed. Based on numerical analyses, it has been shown that the semi-active damped outrigger system can effectively reduce both displacement and acceleration responses of the tall building in comparison with a passive outrigger damper system.
        4,000원
        7.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the concept of damped outrigger system has been proposed for tall buildings. But, structural characteristics and design method of this system were not sufficiently investigated to date. In this study, the dynamic response control performance of outrigger damper has been analyzed. To this end, a simplified analysis model with outrigger damper system has been developed. An artificial wind of 1000 seconds with 0.1 second time steps was generated by using a Kaimal spectrum. Analysis results show that outrigger damper system is more effective up to 20-23% in the control of dynamic response compared to conventional outrigger system. The increase of outrigger damper capacity usually results in the improved control performance. However, it is necessary to select that proper stiffness and damping values of the outrigger damper system because, the outrigger damper having large capacity is result in heavy financial burden.
        4,000원
        8.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, a concept of damped outrigger system has been proposed for tall buildings. Structural characteristics and design method of this system were not sufficiently investigated to date. In this study, control performance of damped outrigger system for building structures subjected to seismic excitations has been investigated. And optimal design method of damped outrigger system has been proposed using multi-objective genetic algorithm. To this end, a simplified numerical model of damped outrigger system has been developed. State-space equation formulation proposed in previous research was used to make a numerical model. Multi-objective genetic algorithms has been employed for optimal design of the stiffness and damping parameters of the outrigger damper. Based on numerical analyses, it has been shown that the damped outrigger system control dynamic responses of the tall buildings subjected to earthquake excitations in comparison with a traditional outrigger system.
        4,000원
        9.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 풍진동 제어 기술의 하나로 현재 대부분의 초고층 건축물에 적용되고 있는 아웃리거 시스템에 댐퍼를 설치한 아웃리거 댐퍼 시스템에 대하여 수치해석모델과 상용 구조해석프로그램을 사용한 모델을 사용하여 최적설계 및 변수연구를 수행하였다. 먼저 아웃리거 댐퍼의 거동 특성을 반영하도록 상태방정식을 사용한 단자유도 수치 모델을 설계하였고 상용 구조해석 프로그램을 사용해서 최적설계를 위한 다자유도모델을 설계하였다. 강성이 고려되지 않고 오직 댐퍼의 감쇠에 의한 최적 위치는 최상층인 것으로 나타났지만 중간 이상의 층에서는 댐퍼의 높이에 따른 성능 변화가 크지 않기 때문에 강성과 감쇠가 복합적으로 운동에 참여하는 실제 구조물의 경우 최적의 위치가 최상층이 아닌 다른 층에 존재한다. 아웃리거 댐퍼시스템은 기존 일반적인 아웃리거 시스템과 비교할 때 가속도 응답을 줄이는데 있어 매우 효과적인 것을 확인하였다.
        4,000원
        10.
        2017.04 서비스 종료(열람 제한)
        In this study, it was modelled high-rise building applying outrigger damper system and analyzed by applying eccentric load. By controlling the variation of damping and stiffness of the damper, the seismic response control performance of outrigger damper system was analysed. An outrigger damper system is effective in controlling the top floor displacement response and torsional angle. Therefore, the damper should be selected the proper stiffness value because the variation of stiffness have an influence on the torsional angle.