검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구 논문은 기후 변화에 대한 전 세계적인 우려와 온실 가스 배출 감소를 위한 필수적인 요구에 대응하여 마 이크로기공 고분자(PIM-1)의 이용을 탐구한 것이다. 연구는 PIM-1 막을 이산화탄소(CO2) 가스 분리 막으로 사용하는 현대적 인 소재로서의 응용에 집중하고 있다. 연구는 PIM-1 막의 합성, 분자량 제어, 그리고 제각각의 특성 분석 기술을 통해 포괄적 인 통찰을 제공하며, 이러한 특성 분석 기술을 통해 PIM-1의 고유한 교차결합 및 강성 구조에서 비롯된 내재적 다공성이 특 히 이산화탄소의 선택적 투과에 활용되고 있다. 논문은 PIM-1의 가교된 구조로부터 비롯된 내재적 다공성이 특히 이산화탄 소의 선택적 투과에 활용되고 있다. 논문은 PIM-1의 튜닝 가능한 화학적 특성을 강조하며, 가스 분리 막의 맞춤 및 최적화를 가능케 하는 특성에 대한 이해를 제시하고 있다. 분자량을 통제함으로써 고분자량(H-PIM-1) 막은 낮은 분자량 대비 더 뛰어 난 CO2 투과성과 선택성을 나타내며, 이를 통해 PIM-1 막의 특성을 조절하는 데 분자량의 중요성을 강조하고 있다. 연구 결 과는 PIM-1 막 특성을 조절하는 데 분자량이 중요한 역할을 하는 것을 강조하며, 이는 기후 변화의 긴급한 글로벌 도전에 대 응하기 위한 효율적이고 선택적인 CO2 포집을 위한 차세대 막 기술의 발전에 기여하고 있다.
        4,000원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        (PIM-1)과 ellagic acid로 만든 랜덤형 공중합체가 간단한 방법으로 합성되었으며, 이산화탄소 분리막에 대한 적용 가능성에 대해서 연구하였다. 이 공중합체의 경우 PIM (polymers with intrinsic microporosity) 고분자의 미세 기공 구조에 기 인한 높은 기체 투과도와 평면 구조와 친수성을 갖는 ellagic acid에 기인한 높은 이산화탄소에 대한 선택성에 의해 우수한 이 산화탄소 기체 분리 성능을 나타내었다. 즉, 이산화탄소에 대한 투과도 4516 Barrer와 CO2/N2 (> 23~26) 및 CO2/CH4 (> 18~19)의 높은 선택성으로 두 쌍의 가스 혼합물에 대해 Robeson 상한(2008)을 초과한 결과를 나타내었다. 이와 같이 PIM-1 에 평면구조를 갖는 ellagic acid을 혼입하면 PIM-1의 꼬인 구조를 방해하여 기체 투과성을 향상 시킬 뿐만 아니라 공중합체 의 강성과 극성이 증가하여 N2 및 CH4에 대한 CO2의 선택성을 증가시키는 결과를 확인하였다.
        4,500원
        7.
        2018.05 구독 인증기관·개인회원 무료
        Polymer membrane-based gas separation has been attracting recent interest due to its ease of operation and low operational cost. Polyimides (PIs) are the most widely used polymers for this application due to their toughness and moderate gas separation properties. However, the gas separation performance of the current polymers, including PIs, do not meet the requirement for the industrial applications. We report herein multi-block PIM-co-PIs as novel polymer membranes for CO2 separation. Synthesis, characterization and their properties including gas separation performance of various compositions of PIM-PI block copolymer membranes will be discussed in details.
        9.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tool steels serve a large range of applications including hot and cold workings of metals and injection mouldings of plastics or light alloys. The high speed steels (HSS) are specifically used as cutting tools and wear parts because it has high strength, wear resistance and hardness along with appreciable toughness and fatigue resistance. From the view of HSS microstructure, it can be described as metallic matrix composites formed by a ferrous with a dispersion of hard and wear resistant carbides. The experimental specimens were manufactured using the PIM with T42 powders (50~80 vol.%) and polymer (20~50 vol.%). The green parts were debinded in n-hexane solution at for 8 hours and thermal debinded at an mixed gas atmosphere for 8 hours. Specimens were sintered in high vacuum ( Torr) and various temperatures.
        4,000원
        10.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to investigate the microstructure and mechanical properties of WC-10 wt% Co insert tool alloy fabricated by PIM (Powder Injection Molding) process, the feedstock of WC-10 wt% and wax used as a kind of binder were mixed together by two blade mixer. After injection molding, the debinding process was carried out by two-steps. First, solvent extraction, in which the binder was eliminated by putting the specimen into normal hexane for 24 hrs at , and subsequently thermal debinding which was conducted at and for 6 hrs in the mixed gas of , respectively. Meantime, in order to compensate the decarburization due to hydrogen, 1.2~1.8% of carbon was added to ensure the integrity of the phase. Finally, the specimens were sintered in vacuum under different temperatures, and the relative density of 99.8% and hardness of 2100 Hv can be achieved when sintered at , even the TRS is lower than the conventional sintering process.
        4,000원
        11.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Development of nanoparticulate materials technology is essential to processing of highly functional nanoparticulate materials and components with small and complex shape. In this paper, the effect of particle size on surface roughness and shrinkage of sintered Fe-8 wt%Ni nanopowder components fabricated by PIM were investigated. The Fe-8 wt%Ni nanopowder was prepared by hydrogen reduction of ball-milled FeO-NiO powder. Feedstock of nanopowder prepared with the wet-milled powder was injection molded into double gear shaped part at 120. After sintering, the sintered part showed near full densified microstructure having apparently no porosity (98%T.D.). Surface roughness of sintered bulk using nanopowder was less than 815 nm and it was about seven times lower than 7 m that is typically obtainable from a sintered part produced from PIM.
        4,000원
        13.
        2006.04 구독 인증기관·개인회원 무료
        Based on the comparison of structures and properties of the HS6-5-2 high speed steels made with the powder injection moulding method, pressureless forming, compacting and sintering, and commercial steels made with the ASEA-STORA method, fine carbides spread evenly in the steel matrix were found in the structure of all tested high-speed steels in the sintered state. The steels made with the pressureless forming method are characteristic of the lowest sintering temperature and the highest density, resulting from the high carbon concentration coming from the binding agent degradation.
        14.
        2006.04 구독 인증기관·개인회원 무료
        To understand the effect of powder characteristics on the thermal debinding behavior, PIM parts produced with powders with different particle sizes and particle shapes were examined to determine their weight losses during thermal debinding. The results show that the average diameter of the pore channel in the compact increased when the temperature increased and when coarse powders were used. However, the weight loss rates did not increase proportionally with the pore size. This suggests that the different powders that are frequently used in PIM parts do not affect the thermal debinding rate significantly. This is because the pore size is much larger than the mean free path of the decomposed gas molecules. Thus, the diffusion rates of the gases are not rate-controlling in thermal debinding. The controlling mechanism of the thermal debinding rate is the decomposition of the backbone binder in the PIM parts.
        15.
        2006.04 구독 인증기관·개인회원 무료
        A ball-shape alumina arc-tube for low-wattage lamp was developed by the PIM process. An ultra high purity translucentgrade alumina powder was used. In injection molding process, a hot-runner type mold was developed. The translucent-grade alumina powder was extremely sensitive to contamination so that the injection molding condition and atmosphere control in the furnace should be taken care of with extreme caution. Contamination sources were pinpointed with EPMA. The arc-tube was molded in half and two halves were bonded in the middle by a new bonding technique at room temperature developed in this study.
        17.
        2006.04 구독 인증기관·개인회원 무료
        Processing and properties of high power piezoelectric transformer (PT) fabricated by PIM with nano-sized piezoelectric powders are demonstrated. The high power characteristics of a PMed dome-shaped PT were examined by the lighting test for a 55watt PL lamp. The 55watt PL lamp was successfully driven by the PIMed PT with sustaining efficiency higher than 98%. The transformer with ring/dot area ratio of 2.1 exhibited the maximum properties in terms of output power, efficiency and temperature stability.
        18.
        2002.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new PIM in-process joining technique has been developed for more complicated and functional PIM components by application of the exuded wax from the green compacts during solvent debinding step. At first, various stainless steels and iron compacts with rectangular shape were combined, and the joining behaviors and properties were investigated by shear and tensile test, and microscopic observation. Subsequently, perfect joined three pieces of thin and hollow compacts were obtained for the combination of same and different stainless steels, and it was difficult to join the iron and stainless steel compacts in hydrogen atmosphere because of the different starting temperature of shrinkage. However, pretty good joined iron and stainless steel compacts were obtained by consideration of particle size and vacuum atmosphere. Finally, for the combination of ferro-silicon and austenitic stainless steel compacts, high functionality (magnetic (1.60Tes1a) & non-magnetic) and perfect joint were obtained.
        4,000원
        19.
        2002.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the viscosity measurement of PIM feedstock, slip correction methods require a number of experiments and produce a high level of error. In this study, a rotational rheometer with a parallel-discs configuration having different surface roughness was tried to minimize the effect of the slip phenomenon. Disc surface was prepared in 3 different roughness conditions - a smooth and 2 roughened surfaces. Results with the roughened surfaces were compared with the results obtained with a slip correction method. Relationship between powder characteristics such as size and shape and a surface roughness of the disc was examined for feedstock of 4 different powders with a same binder. As results, the effect of the slip phenomenon could be sufficiently minimized on the roughened surface in most cases. However, the effect of the slip phenomenon could not be sufficiently minimized for feedstock of a round-particular-shape powder and in the case of very narrow gap size.
        4,000원
        1 2