검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 119

        61.
        2020.07 KCI 등재 서비스 종료(열람 제한)
        This study investigates the characteristics of diurnal, seasonal, and weekly roadside and residential concentrations of PM10 and PM2.5 in Busan, as well as relationship with meteorological phenomenon. Annual mean PM10 and PM2.5 concentrations in Busan were 44.2 ㎍/m3 and 25.3 ㎍/m3, respectively. The PM2.5/PM10 concentration ratio was 0.58. Diurnal variations of PM10 and PM2.5 concentrations in Busan were categorized into three types, depending on the number of peaks and times at which the peaks occurred. Roadside PM10 concentration was highest on Saturday and lowest on Friday. Residential PM10 concentration was highest on Monday and lowest on Friday. Residential PM2.5 concentration was highest on Monday and Tuesday and lowest on Friday. PM10 and PM2.5 concentrations were highest on Asian dust and haze, respectively. The results indicate that understanding the spaciotemporal variation of fine particles could provide insights into establishing a strategy to control urban air quality.
        62.
        2020.05 KCI 등재 서비스 종료(열람 제한)
        This study investigated the nitrate formation process, and mass closure of Particulate Matter (PM) were calculated over the urbanized area of Jeju Island. The data for eight water-soluble inorganic ions and nineteen elements in PM2.5 and PM10 were used. The results show that the nitrate concentration increased as excess ammonium increased in ammonium-rich samples. Furthermore, nitrate formation was not as important in ammonium-poor samples as it was in previous studies. According to the sum of the measured species, approximately 45~53% of gravimetric mass of PM remained unidentified. To calculate the mass closure for both PM2.5 and PM10, PM chemical components were categorized into secondary inorganic aerosol, crustal matter, sea salt, trace matter and unidentified matter. The results by the mass reconstruction of PM components show that the portion of unidentified matter was decreased from 52.7% to 44.0% in PM2.5 and from 45.1% to 29.1% in PM10, despite the exclusion of organic matter and elemental carbon.
        63.
        2020.01 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study is to investigate the relationship of fine dust PM10 and heavy metals in PM10 in Asian dust flowing into Gwangju from 2013 to 2018. The migration pathways of Asian dust was analyzed by backward trajectory analysis using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model, and the change of heavy metal concentration and heavy metal content per 1 μg/m3 of fine dust PM10 in Gwangju area were analyzed. Also, the characteristics of the heavy metals were analyzed using the correlation between the heavy metals in PM10. As a result of analyzing Asian dust entering the Gwangju region for 6 years, the average concentration of PM10 measured in Asian dust was 148 μg/m3, which was about 4.5 times higher than in non-Asian dust, 33 μg/m3. A total of 13 Asian dust flowed into the Gwangju during 6 years, and high concentration of PM10 and heavy metals in that were analyzed in the C path flowing through the Gobi/Loess Plateau-Korean Peninsula. As a result of the correlation analysis, in case of Asian dust, there was a high correlation between soil components in heavy metals, so Asian dust seems to have a large external inflow. On the other hand, in case of non-Asian dust, the correlation between find dust PM10 and artificial heavy metal components was high, indicating that the influence of industrial activities in Gwangju area was high.
        64.
        2019.07 KCI 등재 서비스 종료(열람 제한)
        This research investigated the characteristics of PM10 and PM2.5 concentrations at the main subway stations in Busan. Annual mean PM10 concentrations at the Seomyeon 1- waiting room and platform were 51.3 ㎍/㎥ and 47.5 ㎍/㎥ , respectively, and the annual PM2.5 concentration at the Seomyeon 1- platform was 28.8 ㎍/㎥ . PM2.5/PM10 ratio at Seomyeon 1-platform and Dongnae station were 0.58 and 0.53, respectively. Diurnal variation of PM10 concentration at subway stations in Busan was categorized into four types, depending on the number of peaks and the times at which the peaks occurred. Unlike the areas outside of the subway stations which reported maximum PM10 concentration mostly in spring across the entire locations, the interiors of the subway stations reported the maximum PM10 concentration in spring, winter, and even summer, depending on their location. PM10 concentration was highest on Saturday and lowest on Sunday. The numbers of days when PM10 concentration exceeded 100 ㎍/㎥ and 80 ㎍/㎥ per day over the last three years at the subway stations in Busan were 36 and 239, respectively. The findings of this research are expected to enhace the understanding of the fine particle characteristics at subway stations in Busan and be useful for developing a strategy for controlling urban indoor air quality.
        65.
        2019.03 KCI 등재 서비스 종료(열람 제한)
        직경 10 μm 미만의 대기 미립자 물질(particulate matter, PM10)은 다양한 신체기관에서 산화 스트레 스와 염증반응을 유발한다. 본 연구의 목적은 인간 표피 각질형성세포(HEK)에서 PM10에 의해 유도되는 반응 성 산소종(ROS) 생성의 메커니즘을 알아보는 것이다. 배양된 HEK를 PM10에 노출시켰을 때 ROS가 증가하였으며, 이는 항산화제 apocynin에 의해 저해되었다. PM10에 의해 유도되는 ROS 생성에서 NADPH oxidase (NOX) family의 역할을 규명하기 위하여 이들의 mRNA 발현을 분석하였다. PM10은 NOX1, NOX2, dual oxidase (DUOX)1 및 DUOX2의 mRNA 발현을 증가시켰다. 다른 NOX들에 비교하여 DUOX1 및 DUOX2의 발현 수준이 높았으며, 이들 효소의 maturation factors, 즉 DUOXA1와 DUOXA2의 mRNA 발현도 PM10에 의하여 증가하였다. 칼슘 의존성 효소인 DUOX1과 DUOX2가 PM10에 의해 유도되는 ROS의 생성을 매개하는 지 조사하였다. 선택적인 세포내 칼슘 킬레이터인 BAPTA-AM은 PM10 및 칼슘 ionophore A23187에 유도된 ROS 생성을 감소시켰다. 작은 간섭 RNA (siRNA)에 의한 DUOX2의 하향 조절은 PM10에 의해 유도된 ROS의 생성을 감소시켰고 DUOX1 siRNA는 영향이 없었다. PM10은 interleukin (IL)-1β, IL-6, IL-8 및 interferon (IFN)-γ 등 사이토카인의 발현을 증가시켰다. siRNA에 의한 DUOX2의 하향 조절은 IFN-γ의 발현을 저해하였지만 다른 사이토카인의 발현은 저해하지 않았다. 본 연구는 PM10에 노출된 HEK의 ROS 생성 및 염증 반응에서 DUOX2가 중요한 역할을 함을 시사한다.
        66.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        The characteristics of PM10, PM2.5 and Ratio(PM2.5/PM10) of 11 urban air monitoring stations in Gyeongnam were analyzed for the last 3 years(`15~`17). The average of the all stations was PM10 45 μg/㎥, PM2.5 24 μg/㎥ and Ratio 0.54, and annual reduction rates were PM10 -2.9%, PM2.5 –2.7% and Ratio –1.2%, respectively. The seasonal characteristics of PM10 were spring 54 μg/㎥ > winter 48 μg/㎥ > summer/autumn 40 μg/㎥, PM2.5 were spring/winter 26 μg/㎥ > summer 23 > autumn 22 μg/㎥ and Ratio were summer 0.56 > winter 0.55 > autumn 0.54 > spring 0.51, respectively. The hourly characteristics of PM10 were 11 μg/㎥ higher than 09:00~12:00 at 03:00~06:00, PM2.5 were 6 μg/㎥ higher than 09:00~12:00 at 17:00~18:00 and Ratio were 0.07 higher than 04:00~06:00 at 19:00. By site, the highest concentration of PM10 was YJ site 53 μg/㎥ and PM2.5 was HW site 28 μg/㎥. And Ratio at HD site showed the largest reduction from `15 0.62 to `17 0.52.
        67.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        대기 오염은 피부의 산화적 손상, 염증 및 노화를 일으킬 수 있다. 레스베라트롤은 폴리페놀 화합물의 일종으로 항산화, 항염증, 멜라닌 생성 억제 작용 등 다양한 생물학적 활성이 있는 한편 열과 빛에 약한 단점이 있다. 레스베라트릴 트라이아세테이트(RTA)는 레스베라트롤에 비해 안정하고, 피부 안전성과 미백 효능이 보고된 화장품 신소재이다. 본 연구의 목적은 직경 10 μ m 미만 대기 미립자 물질(PM10)에 노출된 인간 표피 각질형성세포(HEK)의 염증 반응에 대한 레스베라트롤과 RTA의 영향을 조사하기 위한 것이다. 배양된 HEK세 포를 레스베라트롤과 RTA의 유무 조건에서 PM10에 노출시키고, 세포 생존율, 반응성 산소종(ROS)의 생성 및 염증성 사이토카인의 발현을 분석하였다. PM10을 처리하였을 때 세포 생존율이 감소하였고 종양괴사인자- α(TNF-α), 인터루킨-1β(IL-1β), 인터루킨-6(IL-6) 및 인터루킨-8(IL-8)의 발현이 증가하였다. 레 스베라트롤과 RTA는 PM10으로 유도된 세포의 사멸과 ROS 생성을 경감시켰다. PM10에 의해 증가되는 여러 염증성 사이토카인의 발현은 레스베라트롤과 RTA에 의해 경감되거나(IL-6), 증진되거나(IL-1β), 변화하지 않았다(TNF-α 및 IL-8). PM10에 의해 유도된 IL-6단백질의 발현이 레스베라트롤과 RTA에 의해 감소되 었다. 본 연구의 결과는 레스베라트롤과 RTA가 대기 미립자 물질에 노출된 피부의 세포 손상과 염증 반응을 조절하는 작용이 있음을 시사한다.
        68.
        2018.07 KCI 등재 서비스 종료(열람 제한)
        This research investigated the characteristics of PM10 and PM2.5 concentration at roadside (Choryangdong) and residential (Sujeongdong) locations in Busan. The PM10 concentration at roadside and residential locations were 50.5 and 42.9 ㎍/m3, respectively, and PM2.5 at roadside and residential were 28.1 and 23.9 ㎍/m3, respectively. The roadside/residential ratio of PM10 and PM2.5 concentration were 1.18, and the PM2.5/PM10 ratio at roadside and residential were 0.55 and 0.56, respectively. The PM10 concentration in spring at roadside were 64.6 ㎍/m3, and were the highest, followed by 48.0 ㎍/m3 and 45.2 ㎍/m3 in winter and summer. Number of exceedances per year of the daily limit value for PM10 at roadside and residential were 66 and 39 days, respectively. The PM10 and PM2.5 concentration, and PM2.5/PM10 ratio at roadside were 53.0 ㎍/m3, 29.0 ㎍/m3 and 0.55 for day, and 45.5 ㎍/m3, 26.7 ㎍/m3 and 0.59 for night, respectively. These results indicate that understanding the relationship between roadside and residential could provide insight into establishing a strategy to control urban air quality.
        69.
        2018.07 KCI 등재 서비스 종료(열람 제한)
        This study observed particulate matter (PM2.5 and PM10) in the downtown area of Jeju City, South Korea, to understand the chemical composition of particulates based on an analysis of the water-soluble ionic species contained in the particles. The mass fraction of the ionic species in the sampled PM10 and PM2.5 was 44.3% and 42.2%, respectively. In contrast, in Daegu City and Suwon City, the mass fraction of the ionic species in PM2.5 was higher than that in PM10. The chloride depletion percentage of PM10 and PM2.5 in Jeju City was higher than 61% and 66%, respectively. The contribution of sea-salt to the mass of PM10 (5.9%) and PM2.5 (2.6%) in Jeju City was similar to that in several coastal regions of South Korea. The mass ratio of Cl- to Na+ in the downtown area of Jeju City was comparable to that in some coastal regions, such as the Gosan Area of Jeju Island, Deokjeok Island, and Taean City. The mass fraction of sea-salt in PM10 and PM2.5 was very low, and the concentration of sodium and chloride ions in PM10 was not correlated with those in PM2.5 (R2 < 0.2), suggesting that the effects of sea-salt on the formation of particulate matter in Jeju City might be insignificant. The relationship between NH4 + and several anions such as SO4 2-, NO3 -, and Cl-, as well as the relationship between the measurement and calculation of ammonium ion concentration, suggested that sea-salts may not react with H2SO4, and (NH4)2SO4 may be a major secondary inorganic aerosol component of PM2.5 and PM10 in Jeju City.
        70.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        The objective of this study was to estimate air quality trends in the study area by surveying monthly and seasonal concentration trends. To do this, the mass concentration of PM10 samples and the metals, ions, and total carbon in the PM10 were analyzed. The mean concentration of PM10 was 33.9 ㎍/㎥. The composition of PM10 was 39.2% ionic species, 5.1% metallic species, and 26.6% carbonic species (EC and OC). Ionic species, especially sulfate, ammonium, and nitrate, were the most abundant in the PM10 and had a high correlation coefficient with PM10. Seasonal variation of PM10 showed a similar pattern to those of ionic and metallic species. with high concentration during the winter and spring seasons. PM10 showed high correlation with the ionic species NO3 - and NH4 +. In addition, NH4 + was highly correlated with SO4 2- and NO3 -. We obtained four factors through factor analysis and determined the pollution sources using the United States Environmental Protection Agency(U.S. EPA) pollution profile. The first factor accounted for 51.1% of PM10 from complex sources, that is, soil, motor vehicles, and secondary particles: the second factor indicated marine sources; the third factor, industry-related sources; and the last factor, heating-related sources. However, the pollution profile used in this study may be somewhat different from the actual situation in Korea because it was from US EPA. Therefore, to more accurately estimate the pollutants present, it is necessary to create a pollution profile for Korea.
        71.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        In order to investigate the PM10 concentration trend and its characteristics over five different sub area in Busan from 2013 to 2015, data analysis with considering air flow distribution according to its topography was carried out using statistical methodology. The annual mean concentrations of PM10 in Busan tend to decrease from 49.6㎍/m³ in 2013 to 46.9㎍/m³ in 2015. The monthly mean concentrations value of PM10 were high during spring season, from March to May, and low during summer and fall due to frequent rain events. The concentration of PM10 was the highest in five different sub-area in Busan. High concentration episodes over 90 percentile of daily PM10 concentration were strongly associated with mean daily wind speed, and often occurred when the westerly wind or southwesterly wind were dominant. Regardless of wind direction, the highest correlation of PM10 concentrations was observed between eastern and southern regions, which were geographically close to each other, and the lowest in the western and eastern regions blocked by mountains. Wind flow along the complex terrain in Busan is also one of the predominant factors to understand the temporal variation of PM10 concentrations.
        72.
        2017.11 KCI 등재 서비스 종료(열람 제한)
        This study identified physical characteristics and aerosol particle sources of PM10 and PM2.5 in the industrial complex of Busan Metropolitan City, Korea. Samples of PM10, PM2.5 and also soil, were collected in several areas during the year of 2012 to investigate elemental composition. A URG cyclone sampler was used for collection. The samples were collected according to each experimental condition, and the analysis method of SEM-EDX was used to determine the concentration of each metallic element. The comparative analysis indicated that their mass concentration ranged from 1% to 3%. The elements in the industrial region that were above 10% were Si, Al, Fe, and Ca. Those below 5% were Na, Mg, and S. The remaining elements (1% of total mass) consisted of elements such as Ni, Co, Br and Pb. Finally, a statistical tool was applied to the elemental results to identify each source for the industrial region. From a principal components analysis (SPSS, Ver 20.0) performed to analyze the possible sources of PM10 in the industrial region, five main factors were determined. Factor 1 (Si, Al), which accounted for 15.8% of the total variance, was mostly affected by soil and dust from manufacturing facilities nearby, Factors 2 (Cu, Ni), 3 (Zn, Pb), and 4 (Mn, Fe), which also accounted for some of variance, were mainly related to iron, non-ferrous metals, and other industrial manufacturing sources. Also, five factors determined to access possible sources of PM2.5, Factor 1 (Na, S), accounted for 13.5% of the total variance and was affected by sea-salt particles and fuel incineration sources, and Factors 2 (Ti, Mn), 3 (Pb, Cl), 4 (K, Al) also explained significant proportions of the variance. Theses factors mean that the PM2.5 emission sources may be considered as sources of incineration, and metals, and non-ferrous manufacturing industries.
        73.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to determine correlations and similarity between the ozone and PM10 data of 19 air quality monitoring stations in Busan from 2013 to 2016, using correlation and cluster analyses. Ozone concentrations ranged from 0.0278±0.0148 ppm at Gwangbok to 0.0378±0.017 ppm at Taejongdae and were high in suburban areas, such as Yongsuri and Gijang, as well as in coastal areas, such as Jaw, Gwangan, Taejongdae and Noksan. PM10 concentrations ranged from 37.2±25.0 ug/m3 at Gijang to 58.3±32.2 ug/m3 at and Jangrim. PM10 concentrations were high in the west, exceeding the annual ambient air quality standard of 50 ug/m3. Positive correlations were observed for ozone at most stations, ranging from 0.61 between Taejongdae and Sujeong to 0.92 between Bugok and Myeongjang. The correlation coefficients of PM10 between stations ranged from 0.62 between Jangrim and Jaw to 0.9 between Gwangbok and Sujeong. Yeonsan, Daeyeon, and Myeongjang were highly correlated with other stations, so they needed to be reviewed for redundancy. Ozone monitoring stations were initially divided into two sections, north-western areas and suburban-coastal areas. The suburban-coastal areas were subsequently divided into three sections. PM10 monitoring stations were initially divided into western and remaining areas, and then the remaining areas were subsequently divided into three sections.
        74.
        2017.05 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to elucidate the chemical compositions of water-soluble inorganic ions in PM10 and PM2.5 aerosols collected during summer and winter in downtown Jejusi city. The ratios of NO3 - to the total mass of ionic species in PM10 and PM2.5 aerosols largely increase in winter compared to summer, while SO4 2- ratios in both aerosols appear to follow the opposite trend. Moreover, concentrations of Na+, Mg2+, Ca2+ and Cl- in PM10 and PM2.5-10 aerosols are higher in winter than in summer. The nitrate concentrations in PM10 and PM2.5 aerosols increase with an identical increase in excess ammonium during winter, however, nitrate formation during summer is not important owing to ammonium-poor conditions.
        75.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate how PM10 concentration and Relative Humidity (RH) affected visibility in Jinju, Korea. A 9-yr dataset of 1 h averages for visibility, PM10, and RH data was analyzed to examine the correlation between these variables. On average, visibility decreased by 1.4 km for every 10 μg/㎥ increase in PM10 and by 2.1 km for every 10% increase in RH. In general, a negative correlation was observed between visibility and and PM10 concentration. However, under conditions of low PM10 concentration(< 15 μg/㎥) and visibility(< 2 km), there was a positive correlation between these two variables. In this case, RH levels were high (> 75%). A high correlation analysis between two variables need to be under control conditions with RH < 75%, PM10 15~100 μg/㎥, and visibility > 2 km.
        76.
        2017.02 KCI 등재 서비스 종료(열람 제한)
        To determine the effect of air pollution reduction policies, the long-term trend of air pollutants should be analyzed. Kolmogorov-Zurbenko (KZ) filter is a low-pass filter, produced through repeated iterations of a moving average to separate each variable into its temporal components. The moving average for a KZ(m, p) filter is calculated by a filter with window length m and p iterations. The output of the first pass subsequently becomes the input for the next pass. Adjusting the window length and the number of iterations makes it possible to control the filtering of different scales of motion. To break down the daily mean PM10 into individual time components, we assume that the original time series comprises of a long-term trend, seasonal variation, and a short-term component. The short-term component is attributable to weather and short-term fluctuations in precursor emissions, while the seasonal component is a result of changes in the solar angle. The long-term trend results from changes in overall emissions, pollutant transport, climate, policy and/or economics. The long-term trend of the daily mean PM10 decreased sharply from 59.6 ug/m3 in 2002 to 44.6 ug/m3 in 2015. This suggests that there was a long-term downward trend since 2005. The difference between the unadjusted and meteorologically adjusted long-term PM10 is small. Therefore, we can conclude that PM10 is unaffected by the meteorological variables (total insolation, daily mean temperature, daily mean relative humidity, daily mean wind speed, and daily mean local atmospheric pressure) in Busan.
        77.
        2017.02 KCI 등재 서비스 종료(열람 제한)
        The classification of airflow patterns during high ozone (O3) and PM10 episodes on Jeju Island in recent years (2009-2015), as well as their correlation with meteorological conditions according to classified airflow patterns were investigated in this study. The airflow patterns for O3 and PM10 were classified into four types (Types A-D) and three types (Types E-G), respectively, using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and synoptic weather charts. Type A was the most dominant airflow pattern for O3 episodes, being characterized by the transport of airflows from urban and industrial areas in China with the highest frequency (about 69%, with a mean of 67 ppb). With regard to the PM10 episodes, Type E was the most dominant airflow pattern, and was mostly associated with long distance transport from Asian dust source regions along northwesterly winds, having the highest frequency (about 92%, with a mean of 136 μg/m3). The variations in the concentration of O3 and PM10 during the study period were clarified in correlation with two pollutant and meteorological variables; for example, the high (low) O3 and PM10 concentrations with high (low) air temperature and/or wind speed and vice versa for precipitation. The contribution of long-range transport to the observed PM10 levels in urban sites for different airflow patterns (Types E-F), if estimated in comparison to the data from the Gosan background site, was found to account for approximately 87-93% (on average) of its input. The overall results of the present study suggest that the variations in O3 and PM10 concentrations on Jeju Island are mainly influenced by the transport effect, as well as the contribution of local emissions.
        78.
        2017.02 KCI 등재 서비스 종료(열람 제한)
        Asthma deaths in Seoul peaked on the third, fifth, and second days after the PM concentration exceeded the daily average concentration standard. We classified the synoptic meteorological conditions, based on the days involving such cases, into three categories. Type 1 included the meteorological condition likely to cause high air pollution concentrations in the leeward region, the dominant wind direction of which is the northwest. Type 2 included the meteorological condition likely to cause high air pollution concentrations due to the weak wind velocity under stable atmospheric conditions. Type 3 was when the passage low atmospheric pressure and the expansion of high atmospheric pressure occurred at the rear, indicating a meteorological condition likely to cause high air pollution, in certain regions. Type 1 occurred 11 times, with high concentrations of over 100㎍/m³ being observed in the southeastern part of Seoul. Type 2 occurred 24 times, often accompanied by a PM concentration of 100~400 ㎍/m³. Type 3 occurred 11 times, and was accompanied by several days of yellow dust that accounted for the highest concentrations.
        79.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        This study analyzes the PM10 characteristics (particulate matter with aerodynamic diameter less than 10 ㎛), concentration, and emissions in eight large South Korean cities (Seoul, Incheon, Daejeon, Daegu, Gwangju, Ulsan, Busan, Jeju). The annual median of PM10 concentration showed a decline of 0.02~1.97 ㎍/㎥ in the regions, except for Incheon, which recorded an annual 0.02 ㎍/㎥ increase. The monthly distribution levels were high in spring, winter, fall, and the summer, but were lower in summer for all regions except for Ulsan. These differences are thought to be due to the dust in spring and the cleaning effect of precipitation in summer. The variation in concentrations during the day (diurnal variation) showed that PM10 levels were very high during the rush hour and that this was most extreme in the cities (10.00 and 18.00-21.00). The total annual PM10 emissions analysis suggested that there had been a general decrease, except for Jeju. On-road mobile (OM) sources, which contributed a large proportion of the particulates in most regions, decreased, but fugitive dust (FD) sources increased in the remaining regions, except for Daegu. The correlation analysis between PM10 concentrations and emissions showed that FD could be used as a valid, positive predictor of PM10 emissions in Seoul (74.5% (p<0.05)), Dajeon (47.2% (p<0.05)), and Busan (59.1% (p<0.01)). Furthermore, industrial combustion (IC) was also a significant predictor in Incheon (61.7% (p<0.01)), and on-road mobile (OC) sources were a valid predictor in Daegu (24.8% (p<0.05)).
        80.
        2016.05 KCI 등재 서비스 종료(열람 제한)
        This study investigates the characteristics of metallic and ionic elements concentration, concentration according to transport path, and factor analysis in PM10 at Guducsan in Busan in the springtime of 2015. PM10 concentration in Guducsan and Gwaebeopdong were 59.5± 9.04 ㎍/㎥ and 87.5±20.2 ㎍/㎥, respectively. Contribution rate of water-soluble ions and secondary ion in PM10 concentration in Guducsan were 37.0% and 27.8% respectively. [NO3 -/SO4 2-] ratio and contribution rate of sea salt of PM10 in Guducsan and Gwaebeopdong were 0.91 and 1.12, 7.0% and 5.3%, respectively. The results of the backward trajectory analysis indicates that PM10 concentration, total inorganic water-soluble ions and total secondary ions were high when the air parcels moved from Sandong region in China than non-Sandong and northen China to Busan area. The results of the factor analysis at Guducsan indicates that factor 1 was anthropogenic source effects such as automobile emissions and industrial combustion processes, factor 2 was marine sources such as sea salts from sea, and factor 3 was soil component sources.
        1 2 3 4 5