검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 192

        1.
        2024.04 구독 인증기관·개인회원 무료
        노후 구조물의 동적 특성 평가를 위해 대표적인 접촉식 센서인 LVDT와 가속도계를 활용한다. 전통 적인 센서의 데이터 신뢰성은 높지만, 작동 원리로 인하여 대상 구조물의 물리적 접근과 센서의 설치 가 필요하다. 조밀한 센서 설치를 위해선 많은 수의 센서와 데이터 수집장치도 추가적으로 필요하다. 이런 단점을 보완하고자 비접촉식 센서의 개발이 활발히 진행 중이며, 특히 비전센서를 활용한 동적 변위 측정에 관한 연구 및 개발에 많은 진척이 있다. 비전센서를 활용한 동적 변위 측정 시스템은 내 적 파라미터 및 외적 환경조건에 따라 측정 정확도가 크게 변화한다. 주된 내적 파라미터로 영상장비 의 공간분해능은 이미지 센서의 물리적 크리와 촬영거리의 증가 혹은 관심영역이 작아짐에 따라 영향 을 많이 받는다. 외적 환경조건으로 저조도 환경에서 타겟의 밝기차이가 줄어들어 이미지 프로세싱 과 정에서 불리한 조건이며, 이는 동적 변위 측정 정확도 저하로 이어진다. 본 연구에서 저조도 환경에서 비전센서의 운용거리 한계를 초해상화를 적용하여 극복하고자 하며, 인공적 및 자연적 타겟에 대한 동 적 변위 측정 성능을 비교 분석하였다. 동적 변위 측정 실내 실험을 위해 저조도 조건에서 3층 전단 구조물을 9Hz로 가진하였다. 동시에 Sony사의 DSC-100M7 카메라를 활용하여 조화진동으로 인해 발생되는 각층의 변위를 FHD화질 120FPS로 촬영하였고 측정 정확도 비교 분석을 각층의 LVDT 측 정값으로 진행하였다. 촬영거리를 10m를 기준으로 10m씩 증가하면서 최대 40m까지 변위 값을 측정 하였으며, 공간분해능 증가를 위해 GAN기반 초해상화 모델인 RealSR을 적용시켰다. 초해상화를 활용 하여 동적변위를 측정한 결과 저조도 환경에서도 비전센서의 운용 거리가 증가함을 확인할 수 있었으 며, 동시에 변위 측정 정확도도 함께 상승하는 것을 보여줬다.
        2.
        2024.03 구독 인증기관·개인회원 무료
        Evaluation of low temperature performance of asphalt mixture is significant not only for mitigating transverse thermal cracking but also for preventing potential traffic accidents. In addition, the engineers in pavement agency need to inform the proper pavement section where urgent management is needed. Since early 2000, Korea Expressway Corporation Research Division (KECRD) developed an 3D Pavement condition Monitoring profiler vehicle (3DPM) to survey expressway pavement surface condition precisely. The management of whole expressway network became more precise, effective and efficient than before due to application of 3DPM and HPMS. One thing recommended is: performing extensive mechanical test and corresponding data analysis work procedure to further strengthen the feasibility of current 3DPM approach and HPMS. In this paper two activities were considered: first, the pavement section where the urgent care is recommended is selected by means of 3DPM approach. Then asphalt mixture cores were acquired on that specified section then low temperature fracture test: Semi Circular Bending (SCB) test, was performed. The mechanical parameters, energy release rate and fracture toughness were computed then compared. It is concluded that the current 3DPM approach in KEC can successfully evaluate and analyze selected pavement condition. However, more extensive experimental works are needed to further strengthen the current pavement analyzing approaches.
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a prefabricated buckling brace (PF-BRB) was proposed, and a test specimen was manufactured based on the design formula for the initial shape and structural performance tests were performed. As a result of the experiment, all standard performance requirements presented by KDS 41 17 00 and MOE 2021 were satisfied before and after replacement of the reinforcement module, and no fracture of the joint module occurred. As a result of the incremental load test, the physical properties showed a significant difference in the stiffness ratio after yielding under the compressive load of the envelope according to the experimental results. It is judged necessary to further analyze the physical properties according to the experimental results through finite element analysis in the future.
        4,000원
        4.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear power plants in Korea stores approximately 3,800 drums of paraffin solidification products. Due to the lack of homogeneity, these solidification products are not allowed to be disposed of. There is therefore a need for the separation of paraffin from the solidification products. This work developed an equipment for a selective separation of paraffin from the solidification product using the vacuum evaporation and condensational recovery method in a closed system. The equipment mainly consists of a vacuum evaporator and a condensational deposition recovery chamber. Nonisothermal vacuum TGAs, kinetic analyses and kinetic predictions were conducted to set appropriate operation conditions. Its basic operability under the established conditions was first confirmed using pure paraffin solid. Simulated paraffin solidification product fixing dried boric acid waste including nonradioactive Co and Cs were then fabricated and tested for the capability of selective separation of paraffin from the simulated waste. Paraffin was selectively separated without entertainment of Co and Cs. It was confirmed that the developed equipment could separate and recover paraffin in the form of nonradioactive waste.
        5.
        2023.11 구독 인증기관·개인회원 무료
        Properties of bentonite, mainly used as buffer and/or backfill materials, will evolve with time due to thermo-hydro-mechanical-chemical (THMC) processes, which could deteriorate the long-term integrity of the engineered barrier system. In particular, degradation of the backfill in the evolution processes makes it impossible to sufficiently perform the safety functions assigned to prevent groundwater infiltration and retard radionuclide transport. To phenomenologically understand the performance degradation to be caused by evolution, it is essential to conduct the demonstration test for backfill material under the deep geological disposal environment. Accordingly, in this paper, we suggest types of tests and items to be measured for identifying the performance evolution of backfill for the Deep Geological Repository (DGR) in Korea, based on the review results on the performance assessment methodology conducted for the operating license application in Finland. Some of insights derived from reviewing the Finnish case are as follows: 1) The THMC evolution characteristics of backfill material are mainly originated from hydro-mechanical and/or hydrochemical processes driven by the groundwater behavior. 2) These evolutions could occur immediately upon installation of backfill materials and vary depending on characteristics of backfill and groundwater. 3) Through the demonstration experiments with various scales, the hydro-mechanical evolution (e.g. advection and mechanical erosion) of the backfill due to changes in hydraulic behavior could be identified. 4) The hydro-chemical evolution (e.g. alteration and microbial activity) could be identified by analyzing the fully-saturated backfill after completing the experiment. Given the findings, it is judged that the following studies should be first conducted for the candidate backfill materials of the domestic DGR. a) Lab-scale experiment: Measurement for dry density and swelling pressure due to saturation of various backfill materials, time required to reach full saturation, and change in hydraulic conductivity with injection pressure. b) Pilot-scale experiment: Measurement for the mass loss due to erosion; Investigation on the fracture (piping channel) forming and resealing in the saturation process; Identification of the hydro-mechanical evolution with the test scale. c) Post-experiment dismantling analysis for saturated backfill: Measurement of dry density, and contents of organic and harmful substances; Investigation of water content distribution and homogenization of density differences; Identification of the hydro-chemical evolution with groundwater conditions. The results of this study could be directly used to establishing the experimental plan for verifying performance of backfill materials of DGR in Korea, provided that the domestic data such as facility design and site characteristics (including information on groundwater) are acquired.
        6.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The increase in particulate matter due to increased air pollutant emissions has become a significant social issue. According to the Ministry of Environment, air pollutants emitted from large-scale businesses in 2022 increased by 12.2% compared to the previous year, indicating that air pollution is accelerating owing to excessive industrialization. In this study, TiO2, which is used to reduce airborne particulate, was used. The TiO2 coating fixation and dynamic pressure coating-type TiO2 fixation methods were used to solve the material peeling phenomenon caused by gravity, which is a limitation when the TiO2 penetration method is applied to a vertical concrete structure along the road. The long-term durability and performance were analyzed through environmental resistance and NOx removal efficiency evaluation experiments. These analyses were then assessed by comparing the NOx removal efficiency with the dynamic pressure permeationtype TiO2 fixation method used in previous studies. METHODS : To evaluate the long-term durability and performance of the TiO2 coating fixation method and dynamic pressure coating TiO2 fixation method for vertical concrete structures, specimens were manufactured based on roadside vertical concrete structures. Environmental resistance tests such as the surface peeling resistance test (ASTM C 672) and freeze-thaw resistance test (KS F 2456) were conducted to evaluate the long-term durability. To evaluate the long-term performance, the NOx removal efficiency of TiO2 concrete owing to road surface deterioration during the environmental resistance test was evaluated using the NOx removal efficiency evaluation equipment based on the ISO 22197-1 standard. This evaluation was compared and analyzed using the dynamic pressure infiltration TiO2 fixation method. RESULTS : The long-term durability of the TiO2 coating fixation and dynamic pressure coating TiO2 fixation methods were evaluated using environmental resistance tests. During the surface peeling resistance test, the TiO2 material degraded and partially detached from the concrete. However, the NOx removal efficiency was ensured by the non-deteriorated and fixed TiO2 material. The long-term performance was confirmed through a freeze-thaw resistance test to evaluate the NOx removal efficiency after 300 cycles of surface deterioration. The results showed that when the TiO2 coating fixation and dynamic pressure infiltration TiO2 fixation methods were applied to vertical concrete structures, the durability of the structure was not compromised. In comparison to the dynamic pressure infiltration TiO2 fixation method, the NOx removal efficiency observed during the surface peeling resistance test was lower, while the freeze-thaw test exhibited notably higher removal efficiency. CONCLUSIONS : To solve the material peeling phenomenon caused by gravity, the long-term durability and performance were evaluated by applying the TiO2 coating fixation and dynamic pressurized coating TiO2 fixation methods to vertical concrete specimens. Long-term durability was confirmed through environmental resistance tests, and long-term utility was secured by measuring the NOx removal efficiency according to surface degradation. These findings show that implementing the TiO2 coating fixation method and dynamic pressure coating TiO2 fixation methods on-site effectively reduce NOx.
        4,600원
        9.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 지구 온난화의 영향으로 태풍의 파괴력이 증가함에 따라 부유식 해상풍력발전기의 막대한 유실과 붕괴에 대한 우려가 깊어지고 있다. 부유식 해상풍력발전기의 안전한 운영을 위해 새로운 형태의 탈착형 계류 시스템 개발이 요구되고 있다. 본 연구에서 고 려한 새로운 반잠수식 계류 풀리는 기존의 탈착형 계류 장치에 비해 계류 라인으로 부유식 해상풍력 터빈을 보다 쉽게 탈부착할 수 있도 록 고안되었다. 8MW급 부유식 해상풍력발전기에 적용 가능한 반잠수식 계류 풀리의 초기 설계에 대한 구조적 안전성을 검토하기 위해 3D 프린터를 이용하여 축소구조모형을 제작하고, 이 모형에 대한 구조시험을 수행하였다. 축소 모형의 구조시험을 위해 3D 프린팅에 사 용된 ABS 소재의 인장 시편을 제작하고 인장시험을 수행하여 소재의 물성을 평가하였다. 인장시험에서 얻은 재료 특성과 축소모형 구조 시험과 동일한 하중 및 경계 조건을 적용하여 반잠수식 계류 풀리의 유한요소해석을 수행하였다. 유한요소해석을 통해 반잠수식 계류 풀 리의 구조적 취약 부분을 검토하였다. 반잠수식 계류 풀리의 주요 하중조건을 고려하여 구조모형시험을 수행하였으며, 재료의 최대인장 응력 이상이 발생하는 위치에 대해 유한요소해석과 시험 결과를 비교하였다. 유한요소해석과 모형시험의 결과로부터 작동조건에서는 Body와 Wheel의 연결부 구조가 취약한 것으로 파악되었고, 계류조건에서는 Body와 Chain stopper의 연결부 구조가 취약한 것으로 검토되었 다. 축소모형 구조시험에서 나타난 SMP의 구조 취약부는 구조해석의 결과와 일치하는 것으로 나타났다. 연구 결과를 통해 반잠수식 계류 풀리의 초기 설계에 대한 구조적 안전성을 실험적으로 검증할 수 있었다. 또한, 본 연구 결과는 상세설계 단계에서 반잠수식 계류 풀리의 구조 강도를 향상시키는데 유용하게 활용될 수 있을 것으로 판단된다.
        4,000원
        10.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        프리캐스트 코핑의 중공부 주철근 단절로 인한 단점을 보완하고, 거치대 삽입 없이 주철근을 거치대로 활용할 수 있 도록 철근-콘크리트 접촉부의 응력집중을 완화할 수 있는 하중분산세트의 성능을 검토하였다. 유한요소해석 및 축소모형실험을 통해 검토한 결과 하중분산세트는 철근-콘크리트 접촉부의 응력집중을 효과적으로 완화시켜 거치 시 콘크리트 파손을 방지할 수 있을 것으로 판단된다.
        4,000원
        11.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the impact of 26 EFL college students’ familiarity levels with the visual information of TOEIC listening test items on test scores and test performance procedure. Data collected measured students’ degree of familiarity with the visuals via a pre-test and their listening test scores, and responses to the post-test questionnaire were analyzed. To analyze the data, one-way ANOVA was conducted to locate the interdependency between the students’ familiarity levels with visuals and their test scores. Results found that there was no statistically significant differences in test scores regardless of the students’ levels of familiarity with the visuals. Additionally, the correlations between the familiarity with the visuals and the students’ test scores were low. However, the students experienced difficulties with unfamiliar visuals while taking the test. These findings indicate that, although test-takers’ familiarity with visuals does not predict their listening test scores, there is a need to tailor the visuals when developing listening test-items.
        4,900원
        12.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, samples of sea anchor canopy cloth mainly used in Korean jigging fishing vessels were collected and tested for performance evaluation. The canopy cloth of sea anchor is a basic element of form composition that is known to have the greatest influence on anchor performance. In order to evaluate the performance of sea anchor canopy cloth, five types of samples were tested for new metric count, tensile strength, water vapour transmission rate and drying speed according to the national standard (KS), and some correlations were identified. As a result of the test, the new metric count of cloths was 335.5-443.4 denier in warp and 217-447.6 denier in weft, and the minimum tensile strength was 860 N in warp direction and 430 N in weft direction. The apparent number and tensile strength of cloth were proportional, the water vapour transmission rate of the sample was 206.8 g/m 2 h, and the drying speed was 90-100 min. This study partially confirmed the performance evaluation based on speculation by the standard test method, and further research is needed on the clear relationship between the research results and the performance of the sea anchor.
        4,000원
        14.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study sought to conduct a fundamental investigation in order to test and evaluate the thermal performance of an aluminum stick curtain wall system. In terms of the thermal performance index, the infiltration rate of air tightness, thermal transmittance of the heat insulation property and temperature difference ratio of condensation resistance were experimentally measured. The research process can be divided into three parts. First of all, a database for the test report of the curtain wall was compiled and existing design criteria with respect to the evaluation method and standard of transparent building components such as curtain wall, window and door were analyzed to produce the specimens. Secondly, four different types of curtain wall specimens were created through investigating the curtain wall database. Thirdly, standard tests of thermal performance were carried out for airtightness, thermal performance and condensation resistance. As a result, the curtain wall specimens with low-e triple glazing covered by an aluminum capture system showed high thermal performance compared to other curtain wall specimens including low-e triple glazing with a 4-sided structural sealant glazing system. Air tightness of all types of curtain wall specimens satisfied level 1 standard for air tightness. It was found that a curtain wall which consists of a one track frame has difficulties meeting the residential standard of thermal performance with regard to thermal transmittance and condensation resistance.
        4,300원
        19.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Climatologists have warned rapid climate change of the earth and it will cause a big disaster worldwide. the rapid climate change is mostly due to emission of greenhouse gases. To reduce greenhouse gases, many countries have prepared protocols, agreements, and treaties. IMO(International Maritime Organization) have established the protocol to decrease ship’s greenhouse gases emission and they consider the nuclear power source is an option to replace fossils fuels. Our study focused on elemental technologies related to a nuclear powered ship and, the passive residual heat removal system(PRHRS) is one of topics in our study. As the mandatory of the post Fukushima accident, PRHRS for a nuclear powered ship has been studied. We invented the new concepts of PRHRS which is optimized to a nuclear powered ship. The numerical analysis results indicated that the system is very reasonable. Based on the numerical analysis, an experiential loop was set and we preliminary tested the performance of the system under the reduced scale. The experimental results came with the numerical analysis results well.
        4,000원
        20.
        2022.10 구독 인증기관·개인회원 무료
        It is likely to occur internal exposure for workers in Nuclear Power Plants (NPPs) due to the intake of radionuclide. To assess the internal exposure dose the measurement of activity for remain radionuclide is necessary. The Whole Body Counters (WBCs) are commonly used for measurement of remain radionuclide activity in human body. Korea Hydro & Nuclear Power Co., Ltd. (KHNP) conduct performance test of WBCs in all NPPs for every year to confirm the performance of equipment. The performance test is conducted using unknown sources and the participants of the comparison test submit the radionuclide and activity of the unknown sources measured by WBC as a result. The performance indicator and criteria for WBC recommended in the American National Standards Institute (ANSI) N13.30 report published in 2011 are applied. The performance indicator is Root Mean Squared Error (RMSE) and criteria is 0.25 or less. The results of performance test performed in 2022 for all WBC is meet the ANSI N13.30 criteria. And the RMSE values are confirmed from 0.01 to 0.23. This means that the residual radioactivity measurement results using WBC are reliable.
        1 2 3 4 5