검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        2.
        2018.04 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to pushover analyze existing reinforced concrete(RC) frames strengthened by L-type precast concrete(PC) wall panels. Cyclic loading tests were performed on the partially infilled reinforced concrete(RC) frames by L-type PC wall panels. Based on the results of experimental test, the nonlinear pushover analysis was practiced by using a computer program. The analysis models were designed with two ways according to the test result. The PC wall panel and the RC column exhibited almost composite behavior by using brace when push loading applied. The two structures also exhibited independent behavior when pull loading applied. The results of pushover analysis models generally conform to the experimental results. The ratios of the maximum lateral load measured in the strengthened specimens from the analysis varied between 0.93 and 1.01 in forward cycles, and between 0.84 and 0.90 in backward cycles. The initial stiffness values of the analysis were less than the test values for all strengthened specimens. The ratio of the initial stiffness obtained through testing compared to the values from the analysis varied between 0.72 and 0.90.
        3,000원
        3.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reinforced concrete shear walls are effective for resisting lateral loads imposed by wind or earthquakes. Observed damages of the shear wall in recent earthquakes in Chile(2010) and New Zealand(2011) exceeded expectations. Various analytical models have been proposed in order to incorporate such response features in predicting the inelastic response of RC shear walls. However, the model has not been implemented into widely available computer programs, and has not been sufficiently calibrated with and validated against extensive experimental data at both local and global response levels. In this study, reinforced concrete shear walls were modeled with fiber slices, where cross section and reinforcement details of shear walls can be arranged freely. Nonlinear analysis was performed by adding nonlinear shear spring elements that can represent shear deformation. This analysis result will be compared with the existing experiment results. To investigate the nonlinear behavior of reinforced concrete shear walls, reinforced concrete single shear walls with rectangular wall cross section were selected. The analysis results showed that the yield strength of the shear wall was approximately the same value as the experimental results. However, the yielding displacement of the shear wall was still higher in the experiment than the analysis. The analytical model used in this study is available for the analysis of shear wall subjected to high axial forces.
        4,000원
        4.
        2014.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        RC shear wall sections which have irregular shapes such as T, ㄱ, ㄷ sections are typically used in low-rise buildings in Korea. Pushover analysis of building containing such members costs a lot of computation time and needs professional knowledge since it requires complicated modeling and, sometimes, fails to converge. In this study, a method using an equivalent column element for the shear wall is proposed. The equivalent column element consists of an elastic column, an inelastic rotational spring, and rigid beams. The inelastic properties of the rotational spring represent the nonlinear behavior of the shearwall and are obtained from the section analysis results and moment distribution for the member. The use of an axial force to compensate the difference in the axial deformation between the equivalent column element and the actual shear wall is also proposed. The proposed method is applied for the pushover analysis of a 5- story shear wall-frame building and the results are compared with ones using the fiber elements. The comparison shows that the inelastic behavior at the same drift was comparable. However, the performance points estimated using the pushover curves showed some deviations, which seem to be caused by the differences of estimated yield point and damping ratios.
        4,000원
        5.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pushover analysis is becoming a popular tool for seismic design of building structures. In this paper the state-of-art on static nonlinear analysis of building structures is presented with the emphasis on the effects of analysis parameters; i. e., lateral load patterns, modeling of members, and analysis computer programs. The analysed results may have variation even if a same structure is analysed. This paper is to investigate how large the variation is and what the main causes of the variation are. The difference of analysed results, the resultant variation of lateral story shear force and flexural strength of structural members are discussed. The pushover analysis procedure are routinely used in the seismic design of building structures, but some problems must yet be clarified, such as the effects to evaluate the parameters of analysis on the basis of a lateral load patterns and modeling of members.
        4,000원
        6.
        2015.04 서비스 종료(열람 제한)
        Damage states of an underground tunnel structure need to be defined in the estimation of its seismic fragility. They are identified in this paper by applying pushover analyses of an typical tunnel structure. Latin Hypercube sampling (LHS) technique is used to explicitly consider uncertainties in the associated design variables.
        7.
        2012.05 서비스 종료(열람 제한)
        To evaluate seismic performance of existing school buildings, This study performed pushover analysis using Midas/Gen Ver.795. The outcome shows that building have insufficient seismic performance and seismic reinforcement is necessary to have enough seismic performance.
        8.
        2006.05 KCI 등재 서비스 종료(열람 제한)
        미래의 지진을 예측하는 것은 거의 불가능하지만 코드에서는 설계스펙트럼을 이용하여 미래 지진의 최소한의 일반적인 현상을 나타내고자 노력하고 있다. 기존의 고차모드의 영향을 반영하기 위한 방법은 조건이 맞는 지진을 선택하고 응답스펙트럼을 산정해야 하는 단점을 지니고 있다. 따라서 본 논문에서는 이러한 단점을 보완하고자 코드의 설계응답스펙트럼을 이용하여 바로 고차모드의 영향을 반영한 횡력 분배형태을 결정하는 방법을 제시하고 있다. 본 논문에서는 비정형적인 철골모멘트 골조를 이용하여 ATC-40, FEMA 273 그리고 본 논문에서 제안한 방법을 시간이력해석결과와 비교하여 우수성을 검증하였다. 하지만 제안한 방법은 시간이력해석결과에 비해 다소 보수적인 결과를 나타내었다.