검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In 2017, a decision was made to permanently shut down Kori Unit 1, and preparations began to be made for its decontamination and decommissioning. The dismantling of the biological shields concrete, reactor vessel (RV), and reactor vessel internals (RVI) is crucial to the nuclear decommissioning process. These components were radiologically activated by the neutron activation reaction occurring in the reactor during its operational period. Because of the radioactivity of the RV and RVI of Kori Unit 1, remotely controlled systems were developed for cutting within the cavity to reduce radiation exposure. Specialized equipment was developed for underwater cutting operations. This paper focuses on modeling related to RVI operations using the MAVRIC code and the dose calculation for a diver entering the cavity. The upper and lower parts of the RVI are classified as low-level radioactive waste, while the sides that came into contact with the fuel are classified as intermediate-level radioactive waste. Therefore, the modeling presented in this paper only considers the RVI sides because the upper and lower parts have a minimal impact on the radiation exposure. These research findings are anticipated to contribute to enhancing the efficiency and safety of nuclear reactor decommissioning operations.
        4,000원
        2.
        2022.10 구독 인증기관·개인회원 무료
        The decommissioning process of Kori Nuclear Power Plant No.1, which was permanently suspended in 2017, various studies and attention on the decommissioning of nuclear power plants and waste management are being focused. In particular, decommissioning of high-risk facilities should take into account both safety and economic aspects. Small defects in the decommissioning process may lead to major disasters, and the resulting economic losses will cause enormous damage at the national level. In order to prevent such damage, various decommissioning process simulations within a virtual environment should be performed, and process errors and results should be collected and analyzed through simulation to derive the optimal decommissioning scenario as possible. The platform introduced in this paper builds a virtual environment based on drawing and modeling data of Kori Nuclear Power Plant No.1 and automatically creates an optimized cutting path for dismantling the facility and internal structure, and simulates a cutting process similar to reality using Robot Arm. In addition, it is possible to derive and analyze a cutting process scenario by processing process results such as time required for work and cutting distance collected through simulation.
        3.
        2022.10 구독 인증기관·개인회원 무료
        It is necessary to prepare for cutting and storing waste materials in the reactor vessel internals (RVI) for successful decommissioning of the nuclear power plant (NPP). Since RVI contain massive components and relatively highly activated, their decommissioning process should be conducted carefully in terms of radiological and industrial safety. To achieve efficient decommissioning waste management, this study presents radiation level of RVI and cutting optimization was performed for intermediate level waste. As a result of the radiation evaluation, a part of the core side and the upper part of RVI were evaluated as intermediate-level waste, and other components were evaluated as very low-level or lowlevel waste. For intermediate-level waste cutting, the minimum cutting method that can be put into a container was reviewed in consideration of the size, thickness, and cutting method of the interior product. The final segmentation parts are expected to be loaded into two storage containers.
        5.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        After the permanent shutdown of K1 in 2017, decommissioning processes have attracted great attention. According to the current decommissioning roadmap, the dismantling of the activated components of K1 may start in 2026, following the removal of its spent fuel. Since the reactor vessel (RV) and reactor vessel internal (RVI) of K1 contain massive components and are relatively highly activated, their decommissioning process should be conducted carefully in terms of radiological and industrial safety. For achieving maximum efficiency of nuclear waste management processes for K1, we present activation analysis of the segmentation process and waste classification of the RV and RVI components of K1. For RVI, the active fuel regions and some parts of the upper and lower active regions are classified as intermediate-level waste (ILW), while other components are classified as low-level waste (LLW). Due to the RVI’s complex structure and high activation, we suggest various underwater segmentation techniques which are expected to reduce radiation exposure and generate approximately nine ILW and nineteen very low level waste (VLLW)/LLW packages. For RV, the active fuel region and other components are classified as LLW, VLLW, and clearance waste (CW). In this case, we suggest in-situ remote segmentation in air, which is expected to generate approximately forty-two VLLW/LLW packages.
        4,000원