검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 34

        1.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this research, a detailed analysis of the decay heat contributions of both actinides and non-actinides (fission fragments) from spent nuclear fuel (SNF) was made after 50 GWd·tHM−1 burnup of fresh uranium fuel with 4.5% enrichment lasted for 1,350 days. The calculations were made for a long storage period of 300 years divided into four sections 1, 10, 100, and 300 years so that we could study the decay heat and physical disposal ratios of radioactive waste in medium- and long-term storage periods. Fresh fuel burnup calculations were made using the code MCNP, while isotopic content and then decay heat were calculated using the built-in stiff equation solver in the MATLAB code. It is noted that only around 12 isotopes contribute more than 90% of the decay heat at all times. It is also noted that the contribution of actinides persists and is the dominant ether despite decreasing decay heat, while the effect of fission products decreases at a very rapid rate after about 40 years of storage.
        4,000원
        2.
        2023.11 구독 인증기관·개인회원 무료
        The WRK (Waste Repository Korea bentonite) compacted bentonite medium has been considered as the appropriate buffer material in the Korean SNF (Spent nuclear fuel) repository site. In this study, hydraulic properties of the WRK compacted bentonite core (4.5 cm in diameter and 1.0 cm in length) as the buffer material were investigated in laboratory experiments. The porosity and the entry pressure of the water saturated core at different confining pressure conditions were measured. The average velocity of water flow in the WRK compacted bentonite core was calculated from results of the breakthrough curves of the CsI aqueous solution and the hydraulic conductivity of the core was also calculated from the continuous flow core experiments. Because various gases could be generated by continuous SNF fission, container corrosion and biochemical reactions in the repository site, the gas migration property in the WRK compacted bentonite core was also investigated in experiments. The gas permeability and the average of gas (H2) in the core at different water saturation conditions were measured. Laboratory experiments with the WRK Compacted bentonite core were performed under conditions simulating the DGR environment (confining pressure: 1.5- 20.0 MPa, injection pressure: 1.0-5.0 MPa, water saturation: 0-100%). The WRK Compacted bentonite core was saturated at various confining pressure conditions and the porosity ranged from 27.5% to 43.75% (average: 36.75%). The calculated hydraulic conductivity (K) of the core using experimental results was 8.69×10-11 cm/s. The gas permeability of the core when the water saturation 0~58 % was ranged of 19.81~3.43×10-16 m2, representing that the gas migration in the buffer depends directly on the water saturation degree of the buffer medium. The average gas velocity in the core at 58% of water saturation was 9.8×10-6 m/s, suggesting that the gas could migrate fast through the buffer medium in the SNF repository site. Identification of the hydraulic property for the buffer medium, acquired through these experimental measurements is very rare and is considered to have high academic values. Experimental results from this study were used as input parameter values for the numerical modeling to simulate the long-term gas migration in the buffer zone and to evaluate the feasibility of the buffer material, controlling the radionuclide-gas migration in the SNF repository site.
        3.
        2023.11 구독 인증기관·개인회원 무료
        In the 3rd revision of NUREG-0800, which was revised in 2007, the calculation method for decay heat in the design of the Ultimate Heat Sink (UHS) for a pressurized water reactor is recommended to be based on the ANSI/ANS-5.1 method. This method employs a more complex decay heat calculation formula compared to the one introduced in Branch Technical Position ASB 9-2, which was presented in the 2nd revision. While most of the variables for decay heat calculation in ANSI/ANS-5.1 can be inferred from the methods outlined in the appendices, determining the fractions of fission products is not straightforward despite their significant impact on the results. When reviewing documents that evaluate decay heat using the ANSI/ANS-5.1 method, it is observed that they often adopt a conservative approach by assuming that the fraction of the most influential fission product is 100%. In this study, the fractions of each fission product presented in LLNL’s 2016 report were used to calculate decay heat, and the results were compared with the ASB 9-2 method and ORIGEN code results. The comparison showed that ANS 5.1 tends to yield higher decay heat values than ANS 9-2, particularly at the reference time of 1M seconds, while ORIGEN-ARP generally produced lower values. Therefore, it is concluded that even when using the ANSI/ANS-5.1 method with the fractions of each fission product for decay heat calculations in spent nuclear fuel wet or dry storage facility assessments, it provides a sufficiently conservative thermal evaluation.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Since the September 11 terrorist attacks in the United States, concerns about intentional aircraft crashes into nationally critical facilities have soared in countries around the world. The United States government advised nuclear utilities to strengthen the security of nuclear power plants against aircraft crashes and stipulated aircraft crash assessment for new nuclear facilities. Interest in military missile attacks on nuclear facilities has grown after Russia attacked Ukraine’s Zaporizhzhia nuclear power plant, where spent nuclear power dry storage facility is operated. Spent nuclear fuel dry storage facilities in nuclear power plant sites should also strengthen security in preparation for such aircraft crashes. Most, but not all, spent nuclear fuel dry storage facilities in Europe, Japan and Canada are operated within buildings, while the United States and Korea operate dry storage facilities outdoors. Since all of Korea’s dry storage systems are concrete structures vulnerable to crash loads and are exposed to the outside, it is more necessary to prepare for aircraft crash terrorist attacks due to the Korea’s military situation. Residents near nuclear power plants are also demanding assessment and protective measures against such aircraft crashes. However, nuclear power plants, including spent nuclear fuel dry storage facilities, are strong structures and have very high security, so they are unlikely to be selected as targets of terrorism, and spent nuclear fuel dry storage systems are so small that aircraft cannot hit them accurately. Collected opinions on the assessment of aircraft crash accidents at spent nuclear fuel dry storage facilities in nuclear power plant sites were reviewed. In addition, the current laws and regulatory requirements related to strengthening the security of new and existing nuclear power plants against intentional aircraft crashes are summarized. Such strengthening of security can not only ensure the safety of on-site spent nuclear fuel dry storage facilities, but also contribute to the continuous operation of nuclear power plants by increasing resident acceptance.
        5.
        2023.11 구독 인증기관·개인회원 무료
        South It is necessary to develop the future technologies to improve the sustainability and acceptability of nuclear power plants generation. Currently, our company is preparing to build the dry storage facility on-site in accordance with the basic plan for managing high-level radioactive waste announced by the government in 2021. However, studies on technologies for the volume reduction of spent nuclear fuel to increase the efficiency of on-site spent fuel dry storage facilities are very not enough. Accordingly, in this study, the storage efficiency and appropriateness for the SF volume reduction processing technologies such as SF oxide processing technology and consolidation technology are evaluated. Finally, the goal is to develop the optimized technologies to improve the storage efficiency of spent nuclear fuel. As a result in this study is followings. [Safety] After removing volatile fission products (Xe, Kr, I, etc.), Xe, Kr, etc. are removed during storage of the sintered structures. UO2 has a high melting point of approximately 1,000°C after cesium (Cs) has been removed, and heat can be removed by natural convection. [Economy]1999 DUPIC unit facility unit price reference, 2020 standard 328 $/kg estimated. A Comprehensive Approach Considering the Whole System is needed. Benefit from replacement and continuous operation of metal storage containers. Changes in economic efficiency obtained in conjunction with fluctuations in electricity prices and disposal. [Waste filter] A separated solidification facility high-level waste filter is required, and overseas outsourcing must be considered. [Waste cladding]. Cannot be accommodated in low-level disposal site. This reason is why the Ni nuclides occur to be in bulk. [Metal structural material] It is possible to reduce the initial volume by 7.6% or more when compressed or melted, but the technology needs to be advanced. [Oxide blocks] Larger size and density are expected to improve storage and disposal efficiency. [Facilities operation waste] Expected to be able to be disposed of at mid-to-low level decommissioning sites in Gyeongju city. [Solidified volatile nuclides and activated metals] Expected to improve storage efficiency when used volume is reduced and stored, such as outsourced reprocessing. [Oxide block] Radioactivity and decay heat are estimated to be reduced by half during oxide treatment. 75% reduction in volume and 40% reduction in storage area compared to used nuclear fuel before treatment. [Merits/Shortages] Improvement of storage and disposal efficiency empirical research such as large-capacity [real-scale] oxide block production is required. Oxide processing facilities are likely to be classified as post-use nuclear fuel processing facilities. It is determined that additional documents such as a Radiation Environmental Report (RER) must be submitted. Existence of possible external leaks of glass, highly mobile radionuclides from the point of view of nuclear criticality and heat removal. Acceptancy requirements of citizens in the process of creating additional sites for oxide treatment facilities. Considering social public opinion, it is necessary to secure the acceptability such as residents’ opinions convergence. Characteristics of high nuclear non-propagation compared to other processing technologies involving chemical processing. Also, Expectation of volume reduction effect for spent nuclear fuel itself. Volume reduction methods for solid waste and gaseous waste are required.
        6.
        2023.11 구독 인증기관·개인회원 무료
        Korea Hydro & Nuclear Power (KHNP) is currently developing a vertical concrete dry storage module for the dry storage of used nuclear fuel within nuclear power plants. This module is designed with a structure consisting of cylinders, which can block the ingress of external air, thereby preventing Chloride-Induced Stress Corrosion Cracking (CISCC). However, due to the presence of these cylinder structures, unlike conventional dry storage systems, it cannot directly dissipate heat to the external atmosphere, making thermal evaluation an important issue. The SF dry storage module being developed by KHNP is a massive concrete structure of approximately 20 m × 10 m × 7 m in size, employing a vertical storage system. To demonstrate the safety of such a large structure, there is no alternative to conducting experiments with scaled-down models. Furthermore, according to NUREG-2215 Section 5.5.4, it is explicitly mentioned that design-verification testing can be performed using scaled-down models. In this paper, a 1/4 scaled-down model was constructed to perform thermal performance verification experiments, and the effectiveness of this model was analyzed using Computational Fluid Dynamics (CFD) methods. The analysis results indicated that there was not a significant difference in terms of maximum concrete temperature and air outlet temperature. However, a considerable difference was observed in the canister surface temperature. Therefore, it is concluded that careful consideration of natural convection heat transfer is necessary for the full application of the scaled-down model.
        7.
        2023.05 구독 인증기관·개인회원 무료
        IAEA safety standards document and international programs (such as BIOMASS) related to the assessment of the biosphere around High Level Radioactive Waste (including Spent Nuclear Fuel) repositories require the assessment of the biosphere to use the assumption that the current natural environment and human society will be maintained, and at the same time, the evolution of the distant future changes also need to be taken into account. In Korea, which has not designated candidate disposal sites, it is necessary to investigate and predict the current state and future changes of the natural environment throughout Korea and apply it practically to Biosphere assessment (for BDCF derivation) for candidate disposal sites suitability assessment and Safety Case (for performance assessment) preparation for design, construction, operation, and post-closure management. To this end, the natural environment in the fields of Topography, Geology, Soil, Ecology, Weather and Climate, Animals and Plants, Hydrology, Ocean, Land-use, etc. and human society in the fields of Population Distribution, Spatial-Planning, Urban Form, Industrial-Structure, Lifestyle etc. are being investigated in the context of current status, past change records, and future change potential in the Korean Peninsula. This paper summarizes those investigations to date. This study referred Biomass-6 [IAEA] and National Atlas I (2019)/II (2020)/III (2021) [National Geographic Information Institute of the Korea Ministry of Land, Infrastructure and Transport].
        8.
        2023.05 구독 인증기관·개인회원 무료
        Рrecipitation of platinum group metals (Rh, Ru, Pd, so-called MPG) from the melt essentially affects the reliability of installations for vitrification of high-level liquid radioactive waste (HLW). To date, it is difficult to find an approach which allows simultaneous recovery of all three metals. The aim of our work was to select a sorbent that would provide simultaneous up to complete recovery of given metals. The following inorganic materials were tested as sorbents – yellow blood salt (YBS).and hexacyanoferrates of iron, aluminum, copper and nickel. The degree of metal recovery was studied is influenced by the temperature and concentration of nitric acid. Only palladium was completely recovered using YBS. At the same time, specially prepared iron hexacyanoferrate (HCF-Fe) under optimal experimental conditions recovers almost all Pd and more than 95% and 90% of Rh and Ru, respectively. The behavior of fission products, including the main dose-forming components of HLW (Cs, Sr) and Mo, U, Ag, REE) in the course of MPG recovery was studied. The experiments were carried using both multicomponent model solutions and real raffinates. Options for further management of the recovered metals have been worked out. Thus, the proposed method of metal recovery seems promising for the development of a technology for the removal of MPG from nitric HLW during the reprocessing of the spent nuclear fuel (SNF) before vitrification. The recovered metals can be probably used in various technological processes. Also, this method can provide the MPG recovery from low-concentration tail solutions.
        9.
        2023.05 구독 인증기관·개인회원 무료
        South Korea has been storing UNF in spent fuel pool dry storage facility within Nuclear Power Plants. The dry storage facility of used nuclear fuel (UNF) is essential to sustain safety and sustain stable operation of a nuclear power plant. Most abroad countries have attempted to develop a variety of dry storage facility for used nuclear fuel in order to retain the safe restoration. Many studies have been conducting to safety evaluation for the dry storage facility. However, there is not a ventilation evaluation in the wake of fire event that could influence of the thermal effect on the dry storage facility, even though it will likely to occur fire events such as wildfire, air craft crash. In practice, it happened to catastrophic disaster due to the wild fire adjacent to ul-jin mountain. Also, it happened to fire accident near to the Japonia NPP in Ukraine territory caused of military air plane missile. It has not mostly been studied on the ventilation evaluation considered to thermal safety in the dry storage facility excepted for some researches. It could need the mechanical ventilation systems such as HVAC system in the dry storage system, so that thermal effect can be reduced. In this study, we conducted to the ventilation control modelling by using fire modelling tool (Fire Dynamic Simulator v.6.7). The ventilation scenarios made up for 3 case that can compare flowrate variation with ventilation control. As a result of modelling, there is no differentiation between ventilation control using performance curve with not using performance curve even though the pressure fluctuation would be increased, compared with the case of considering performance curve. Second, it evaluated that the mode for fraction control would occur to pressure rise in the state of controlling the ventilation system flowrate. However, sensitivity of flowrate control was more decreased below less than 5 seconds. Third, in the case of on/off control system revealed more higher resolution than other cases caused by flowrate variation. These results could be considered as the design guidelines for the development dry storage facility to improve the thermal performance that can reduce thermal risk. Furthermore, the study results would expect HVAC system installed in dry storage to help automatic ventilation control relevant to dry storage safety increased.
        10.
        2023.05 구독 인증기관·개인회원 무료
        The damage ratio of Spent Nuclear Fuel (SNF) is a very important intermediate variable for dry storage risk assessment which require an interdisciplinary and comprehensive investigation. It is known that the pinch load applied to the cladding can lead to Mode-3 failure and the cladding becomes more vulnerable to this failure mode with the existence of radial hydrides and other forms of mechanical defects. In this study, a sensitivity analysis was performed to evaluate the importance of the damage parameters that need to be calibrated for the simulation of zircaloy-4 cladding failure using computational mechanics. The simulation model was generated from a microscopic image of the cladding with hydride. The image segmentation method was used to separate the Zircaloy-4, hydride, and hydride- Zircaloy matrix interfaces to create a pixel-based finite element model. The ring compression test (RCT) was simulated because the resistance of the cladding under pinch load can be evaluated by this test. It was assumed that the damage starts with the formation and growth of voids or small cracks in the material, which grow and combine to form larger cracks, eventually leading to the complete fracture of the material. Therefore, the ductile damage criterion was applied to all materials to simulate crack formation and propagation. The sensitivity analysis was performed based on the design of experiments using L8 orthogonal array. The effects of five factors on the fracture resistance of hydrided cladding were quantified, and they are the fracture strains describing the damage initiation in zircaloy-4 matrix, hydride, and hydride-zirconium matrix, and yield stress and Young’s modulus for hydride-zirconium matrix. Information on those parameters are hardly available in literature and experimental data which enable the estimation of those are also very rare. It is planned to build a computational model which can accurately simulate the fracture behavior of hydrided cladding by calibrating significant fracture parameters using reverse engineering. The results of this study will help to figure out those significant parameters.
        11.
        2023.05 구독 인증기관·개인회원 무료
        Currently, in the United States, Spent Nuclear Fuel (SNF) is stored at the Independent Spent Fuel Storage Installations (ISFSIs) at 73 Nuclear Power Plants (NPPs). The SNF inventory stored on-site either in pools or dry storage was 84,500 MTU in 2020. The inventory stored in on-site dry storage facilities was 39,207 MTU (46% of the total), and it is growing at a rate of approximately 3,500 MTUs per year. However, because a site for geologic repository for permanent disposal of SNF has not been constructed in the U.S., the SNF will need to be stored in dry storage facilities across the U.S. for a much longer period of time than originally planned. During this time, the dry storage facilities could experience earthquakes of a different magnitude than the one for which they were originally designed. However, there is little data on the response of SNF inside dry storage systems to seismic loads in the U.S., and the various gaps and nonlinearities between storage containers, canisters, baskets, aggregates, and fuel make it very difficult to evaluate by analytical methods. Therefore, a full-scale shake table test is being planned as an international joint research project led by Sandia National Laboratories (SNL) in the U.S. In Korea, KNF decided to participate in this seismic test through the project of SNF integrity evaluation under road and sea normal transportation conditions organized by KNF and conducted by KORAD, KAERI, and Kyung-Hee University, and has provided the KNF 17ACE7 and PLUS7 test assemblies for the tests to SNL. The test will be conducted at the LHPOST6 shake table test facility operated by University of California in San Diego (UCSD) from 2023 to 2024, with the participation of KNF, CRI, and KAERI in Korea. The test units consist of a NUHOMS 32 PTH2 canister, a mockup of a generic vertical cask, a mockup of a generic horizontal storage module, 4 surrogate fuel assemblies, and 28 dummy assemblies. The seismic inputs for the tests will consist of ground motions (acceleration time histories) representative of hard rock, soft rock, and soil sites and seismic conditions in moderately tectonically active Central and Eastern US and highly tectonically active Western US. Ground accelerations for soft rock and soil conditions will be developed taking in account soil-structure interaction. Not only is this test almost impossible to conduct independently in Korea in terms of scale, facilities and costs, but it is also considered an essential test for those of us who are preparing for dry storage of spent nuclear fuel, given the increasing social concern about earthquakes due to the recent earthquake in Turkey.
        12.
        2022.10 구독 인증기관·개인회원 무료
        As the amount of on-site Spent Nuclear Fuel (SNF) in storage increases due to the continued operation of Nuclear Power Plants (NPPs) in Korea, the on-site wet storage pool is expected to become saturated. Therefore, a facility for safely storing the spent nuclear fuel is required so that there is no problem with operation of the NPP until permanent disposal of SNF. Prior to the construction of such a facility, the safety analysis of the interim storage facility and verification of the safety of the spent fuel storage system (e.g. cask, silo) to be used are required according to Article 63 of the Nuclear Safety Act. In this process, analysis of the Structures, Systems, and Components (SSCs) of the storage system is needed. Based on the analysis, it is necessary to efficiently classify SSCs that are important to safety in order to differentiate management that more thoroughly manages those important to safety. In Korea, according to the notice of the Nuclear Safety and Security Commission, the components performing essential safety functions for the safe storage of spent fuel storage system are to be classified as “important safety equipment”. 10 CFR Part 72, a federal regulation related to interim storage facilities in the United States, also requires the identification of SSCs that fall under “Important to Safety (ITS)”, which is like domestic case. In addition, it has been confirmed that there are cases in which detailed classification according to Reg Guide 7.10 and NUREG-CR/6407 is added in Safety Analysis Report. However, these existing classification methods are not only classified as a single grade except for the method according to the Reg guide, but all are classified according to a qualitative standard. Qualitative criteria may cause ambiguity in judgment, resulting in subjective judgment of the person who proceeds in the classification process. Therefore, in this study, a new classification method is proposed to solve the problem according to the qualitative classification method. Assessing the level of radiological harm to the general public due to the assumption of failure of SSC in the spent fuel storage system is used as a quantitative evaluation standard.
        13.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Three government bodies, that is, the Ministry of Science and ICT (MSIT), Ministry of Trade, Industry, and Energy (MOTIE), and Nuclear Safety and Security (NSSC), jointly established the Institute for Korea Spent Nuclear Fuel (iKSNF) in December 2020 to secure the management technologies for spent nuclear fuel (SNF). The objective of iKSNF is to successfully conduct the long-term research and development program of the 「Development of Core Technologies to Ensure Safety of Spent Nuclear Fuel Storage and Disposal System」. Our program, known as the first multi-ministry program in the nuclear field of Korea, mainly focuses on developing core technologies required for the long-term management of SNF, including those for safe storage and deep geological disposal of SNF. The program comprises three subprograms and seven key projects covering the storage, disposal, and regulatory sectors of SNF management. Our program will last from 2021 through 2029, with a budget of approximately four billion USD sponsored by MSIT, MOTIE, and NSSC.
        3,000원
        14.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Safe geological disposal of spent nuclear fuel (SNF) requires knowledge of the deep hydrochemical characteristics of the repository site. Here, we conducted a set of deep hydrochemical investigations using a 750-m borehole drilled in a model granite system in Wonju, South Korea. A closed investigation system consisting of a double-packer, Waterra pump, flow cell, and water-quality measurement unit was used for in situ water quality measurements and subsequent groundwater sampling. We managed the drilling water labeled with a fluorescein dye using a recycling system that reuses the water discharged from the borehole. We selected the test depths based on the dye concentrations, outflow water quality parameters, borehole logging, and visual inspection of the rock cores. The groundwater pumped up to the surface flowed into the flow cell, where the in situ water quality parameters were measured, and it was then collected for further laboratory measurements. Atmospheric contact was minimized during the entire process. Before hydrochemical measurements and sample collection, pumping was performed to purge the remnant drilling water. This study on a model borehole can serve as a reference for the future development of deep hydrochemical investigation procedures and techniques for siting processes of SNF repositories.
        4,900원
        1 2