검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 302

        21.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes a method to evaluate the structural safety of a large wide-width greenhouse structure against wind load caused by a typhoon through a fluid structure interaction analysis technique. The conventional method consisted of roughly estimating the wind load based on the relevant laws and regulations, and determining safety through structural analysis. However, since the wind load changes nonlinearly according to the wind speed distribution and wind direction around the greenhouse and the external shape of the structure, there are many uncertainties in the existing structural safety evaluation method, and it is difficult to accurately determine the design margin. In this study, a systematic method was developed to accurately calculate the wind load acting on a greenhouse structure and evaluate structural safety by considering the characteristics of wind through a fluid structure interaction analysis using coupled computational fluid dynamics and computational structural mechanics. Using the proposed method, it is possible to significantly reduce the manufacturing cost because it is possible to obtain an optimal design that reduces the over-conservative design margin while securing the structural strength of the greenhouse.
        4,000원
        22.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the automobile manufacturing industry, lightweight design is one of the essential challenges to be solved fundamentally. The vehicle wheels are classified as safety related components as the main substructure of the vehicle. In this study, we illustrate a technique for selecting the appropriate number of spokes. Based on the basic model of the selected number of spokes, we propose a method to maintain stiffness and design lightweight using topology optimization software. Based on the basic model of the selected number of spokes, it was redesigned to be lightweight while maintaining stiffness by utilizing topology optimization software. By comparing and reviewing the structural analysis results of the basic model and the redesigned model, a design technique that can maintain structural safety and reduce wheel mass was proposed.
        4,000원
        23.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        로터 블레이드는 조류발전 터빈의 매우 중요한 구성 요소로서, 해수의 높은 밀도로 인해 큰 추력(Trust force)와 하중(Load)의 영 향을 받는다. 따라서 블레이드의 형상 및 구조 설계를 통한 성능과 복합소재를 적용한 블레이드의 구조적 안전성을 반드시 확보해야 한 다. 본 연구에서는 블레이드 설계 기법인 BEM(Blade Element Momentum) 이론을 이용해 1MW급 대형 터빈 블레이드를 설계하였으며, 터빈 블레이드의 재료는 강화섬유 중의 하나인 GFRP(Glass Fiber Reinforced Plastics)를 기본으로 CFRP(Carbon Fiber Reinforced Plastics)를 샌드위치 구조에 적용해 블레이드 단면을 적층(Lay-up)하였다. 또한 유동의 변화에 따른 구조적 안전성을 평가하기 위해 유체-구조 연성해석 (Fluid-Structure Interactive Analysis, FSI) 기법을 이용한 선형적 탄성범위 안의 정적 하중해석을 수행하였으며, 블레이드의 팁 변형량, 변형 률, 파손지수를 분석해 구조적 안전성을 평가하였다. 결과적으로, CFRP가 적용된 Model-B의 경우 팁 변형량과 블레이드의 중량을 감소시 켰으며, 파손지수 IRF(Inverse Reserce Factor)가 Model-A의 3.0*Vr를 제외한 모든 하중 영역에서 1.0 이하를 지시해 안전성을 확보할 수 있었 다. 향후 블레이드의 재료변경과 적층 패턴의 재설계뿐 아니라 다양한 파손이론을 적용해 구조건전성을 평가할 예정이다.
        4,000원
        24.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, elevator inspection and self-examination were strengthened through the revision of the Elevator Safety Management Act, but there have been no significant reduction in serious accidents and major failures. Therefore, the government intends to lay the foundation for reflecting the safety quality rating system, which adjusts the elevator inspection cycle, as a policy to induce safety management of preemptive and active management entities. This study systematically reviewed and classified the safety quality rating system for elevator inspection cycle adjustment in previous studies, collected expert opinions, and reconstructed the key items into realistic evaluation items, and evaluated and scored the relative importance of each factor through the AHP technique.
        4,000원
        25.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study was to quantitatively evaluate the variability of LiDAR performance indicators, such as intensity and Number of Point Cloud(NPC), according to various environmental factors and material characteristics. METHODS : To consider the material characteristics of road safety facilities, various materials (Reference Material(RM), reflective sheet, matte sheet, granite, plastic, and rubber) were used in a darkroom, and the performance indicators of LiDAR were repeatedly measured in terms of changes in the measurement distance, rainfall, and angle of observation. RESULTS : In the case of standard reflective materials, the intensity measurement value decreased as the measurement distance and rainfall increased. The NPC showed a tendency to decrease as the measurement distance increased, regardless of rainfall intensity. For materials with high-intensity values, it was found that rainfall intensity and color had negligible effect on the change in intensity compared with the measurement distance. However, for materials with low-intensity values, it was found that the measurement distance, rainfall intensity, and color all had a significant effect on the change in intensity. CONCLUSIONS : For materials with high-intensity values, it was found that rainfall and color had negligible effect on change in intensity compared with the measurement distance. However, for materials with low-intensity values, the measurement distance, rainfall, and color all had a significant effect on the change in intensity value.
        4,000원
        28.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we collect water control valves that have had accidents due to existing cracks, etc. are collected, and propose investigation items for strengthening the valve structural safety evaluation through a series of analyzes from valve specifications to physicochemical properties are proposed. The results of this study are as follows. First, there was a large variation in the thickness of the body or flange of the valves to be investigated, which is considered to be very important factor, because it may affect the safety of the valve body against internal pressure and the flange connected with the bolt nut. Second, 60% of the valves under investigation had many voids in the valve body and flange, etc. and the decrease in thickness due to corrosion was relatively large on the inner surface in contact with water rather than the outer surface. It is judged that the investigation of depth included voids is very important factor. Third, all valves to be investigated are made of gray cast iron foam, and therefore it is judged that there is no major problem in chemical composition. It is judged that the chemical composition should be investigated. Fourth, as a physical investigation item, the analysis of metal morphology structure seems to be a very important factor for nodular cast iron from rather than a gray cast iron foam water valve with a flake structure. As it was found to be 46.7~68.8% of the standard recommended by KS, it could have a direct effect on damage such as cracks, and therefore it is judged that the evaluation of tensile strength is very important in evaluating the safety of the valve.
        4,500원
        29.
        2022.10 구독 인증기관·개인회원 무료
        In Korea, Kori Unit 1, a commercial pressurized water reactor (PWR), was permanently shut down in June 2017, and an immediate decommissioning strategy is underway. Therefore, it is essential to understand the characteristics of radioactive waste during the decommissioning process of nuclear power plants (NPP). Because radioactive waste must be handled with care, radioactive waste is treated in a hot cell facility. Hot cell facility handles radioactive waste, and worker safety is essential. In this study, it was dealt with whether or not the radiation safety regulations were satisfied when processing the core beltline metal of the dismantling waste treated at the post irradiation examination facility (PIEF) of the hot cell facility. Core beltline metal used for the pressure vessel in the reactor is carbon steel, and it is continuously irradiated by neutrons during the operation of the NPP. A radiological safety estimation of the behavior of radioactive aerosols during the cutting process within the PIEF was carried out to ensure the safety of the environment and workers. When processing the core beltline metal in PIEF, dominant six nuclides (60Co, 63Ni, 55Fe, 3H, 59Ni, 14C) of aerosol are generated. Accordingly each cutting device, amount of aerosol and value of dose is different. Using a 99.97% efficiency HEPA filter, the emission concentration of the dominant nuclides (60Co, 63Ni, 55Fe, 3H, 59Ni, 14C) in the air source term was satisfied with the emission control standard of Nuclear Safety Commission No. 2016-16. It was confirmed that the radioactivity concentration in the airborne source term inside the PIEF is in equilibrium state, when ventilation is considered. Also, the mass of aerosol and the concentration of airborne source term differed according to the thickness of the saw blade of the cutting tool, and the exposure dose of the worker was different through Monte Carlo N-Particle (MCNP). At that time, 60Co accounted for 95.4% of the exposure dose, showing that 60Co had the highest impact on workers, followed by 55Fe with 2.7%. The worker’s dose limit is satisfied in accordance with Article 2 of the Nuclear Safety Act and the dose limit of radiation-controlled area is found to be satisfied in accordance with Article 3 of the rules on technical standards for radiation safety management at this time.
        34.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        우리나라는 연안해역을 집약적으로 활용하기 때문에 폐기물로 인한 해양사고 발생률도 높은 편이다. 항해하는 선박의 추진기 에 해양부유물, 폐로프, 폐어망 등이 감기는 사고를 부유물감김사고로 정의하고 있다. 이러한 사고를 예방하기 위해 본 연구에서는 국내 에 상용화되어 세이버 타입(Shaver type)의 로프절단장치를 유한요소법을 이용하여 구조안전성 검토와 수조시험을 통해 절단 과정 및 성능 평가를 진행하였다. 그 결과 로프절단장치를 구성하는 모든 파트는 0.5s 도달하기 전 파손되었으며, 인장강도 대비 발생한 최대응력을 기 준으로 각 파트의 안전계수는 최소 2이상으로 나타났다. 수조시험에서는 세이버타입의 절단장치의 절단 과정을 살펴보았고, 실제 해상에 서 부유중인 폐로프가 다양한 각도로 진입하는 것을 고려하여 케이스 별로 설치 각도를 설정하였다. 그 결과 모든 케이스에서 절단이 되 었으며, 절단 날이 어떠한 각도에 장착되어도 로프를 절단하는데 문제가 없을 것으로 판단된다.
        4,000원
        35.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluated the migrant and residue tests of lead (Pb), cadmium (Cd), nickel (Ni), arsenic (As), and antimony (Sb) in 70 tumbler samples. The migration levels of hazardous metals in all the samples were within the migration limits outlined in the Korean standards and specifications for utensils, containers, and packages. Moreover, in all the tumbler samples, only Ni was detected in 0.5% citric acid solution of a food stimulant. The maximum level of Ni 0.0144 mg/L was 14.4% of the migrant specification (not more than 0.1 mg/L), which was relatively safe. The 0.5% citric acid solution was eluted at 4oC, 70oC, and 100oC for 30 min, and only Ni was detected while testing for migration levels according to the temperature variations; all temperature conditions conformed to the standards. The level of Ni migration increased significantly with increasing migration temperature. Regarding the residue level outside the paint-coated tumbler samples, the Pb level was found to range from N.D. to 20638.1323 mg/kg. The risk of Ni was further estimated to be at a safe level of 0.00 to 0.01% compared to the %TDI as a result.
        4,000원
        36.
        2022.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The detection of the genome-based antibiotic resistance gene is an essential analysis process for the purpose of verifying the safety of probiotic strains, including lactic acid bacteria. In this study, 4 analysis platforms (AMRFinderPlus, staramr, rgi, ABRicate) were used for cross-comparison of 782 genomes corresponding to 19 kinds of probiotic species notified as functional foods. As a result of the analysis, the relatively fewest number of antibiotic resistance genes were detected in strains belonging to the order Lactobacillales, and antibiotic resistance genes were detected in 322 genomes used in the case of 2 types of Enterococcus genus. In addition, the presence and type of antibiotic resistance gene detection showed a lot of difference even for the same genome sequence depending on the database and analysis algorithm used by the analysis platform. These results can be confused in evaluating the potential for transmission of antibiotic resistance genes inherent in specific lactic acid bacteria and predicting potential risks that may occur in the future. Accordingly, it is judged that the antibiotic resistance gene-related analysis criteria need to be established more clearly and specifically in the safety evaluation of probiotic bacteria.
        4,000원
        38.
        2022.05 구독 인증기관·개인회원 무료
        The mechanical safety of the container designed according to the IP-2 type technology standard was analyzed for the temporary storage and transportation of Very-Low-Level-Waste (VLLW) for liquid occurring at the nuclear facilities decommissioning site. The container was designed and manufactured as a composite shielding container with the effect of storing and shielding liquid radioactive waste using High Density Polyethylene (HDPE) and eco-friendly shielding material (BaSO4) with corrosion and chemical resistance. The main material of the composite shielding container is HDPE and BaSO4, the material of the cover, cage and pallet is SUS304, and the angle guard is elastic rubber. The test and analysis requirements were analyzed for structural analysis of container drop and lamination test. As test requirements for IP-2 type transport containers should be verified by performing drop and lamination tests. There should be no loss or dispersion of contents through the 1.2 m high free-fall drop and lamination test for a load five times the amount of transported material. ABAQUS/Explicit, a commercial finite element analysis program, was used for structural analysis of the drop and lamination test of the transport and storage container. (Drop test) It was confirmed that the container was most affected when it falls from a 45-degree slope. Although plastic deformation was observed at the edge axis of the cover, it was evaluated that the range of plastic deformation was limited to the cover and cage, and stress within the elastic limit occurred in the inner container. In the analysis results for other falling direction conditions, it was evaluated that stress within the elastic limit was generated in the inner container except for minor plastic deformation. In the case of on-site simulation evaluation, deformation of the inner container and frame due to the drop impact occurred, but leakage and loss of contents, which are major evaluation indicators, did not occur. (Lamination test) The maximum stress was calculated to be 19.9 MPa under the lamination condition for a load 5 times the container weight, and the maximum stress point appeared at the corner axis of the pallet. The calculated value for the maximum stress is about 10%, assuming the conservative yield strength of SUS304 is 200 MPa. It was evaluated that stress within the limit occurred. In the case of on-site simulation evaluation, it was confirmed that there was no container deformation or loss of contents due to the load.
        39.
        2022.05 구독 인증기관·개인회원 무료
        Glass fiber, which was used as an insulation material in pipes near the steam generator system of nuclear power plants, is brittle and the size of crushed particles is small, so glass fiber radioactive waste (GFRW) can cause exposure of workers through skin and breathing during transport and handling accidents. In this study, Q-system which developed IAEA (International Atomic Energy Agency) for setting the limit of radioactivity in the package is used to confirm the risk of exposure due to an accident when transporting and handling GFRW. Also, the evaluated exposure dose was compared with the domestic legal effective dose limit to confirm safety. Q-system is an evaluation method that can derive doses according to exposure pathway (EP) and radioactivity. Exposure doses are calculated by dividing into five EP: QA, QB, QC, QD, and QE. Since the Q-system is used to set the limit of radioactivity that the dose limits is satisfied to nearby workers even in package handling accidents, the following conservative assumptions were applied to each EP. QA, QB are external EP of assuming complete loss of package shielding by accident and radiation are received for 30 minutes at 1 m, QC is an internal EP that considers the fraction of nuclides released into the air and breathing rate during accident, and QD is an external EP that skin contamination for 5 hours. Finally, QE is an internal and external EP by inert gases (He, Ne, Ar, Kr, Xe, Rn) among the released gaseous nuclides, but the QE pathway was excluded from the evaluation because the corresponding nuclide was not present in the GFRW products used for evaluation. In this study, the safety evaluation of GFRW was performed package shielding loss and radioactive material leakage due to single package accident according to assumption of four pathways, and the nuclide information used the average radioactivity for each nuclide of GFRW. As a result of the dose evaluation, QA was evaluated as 2.73×10−5 mSv, QB as 1.06×10−6 mSv, QC as 7.53×10−3 mSv, and QD as 2.10×10−6 mSv, respectively, and the total exposure dose was only 7.56×10−3 mSv, it was confirmed that when compared to the legal limits of the general public (1 mSv) and workers (20 mSv) 0.756% and 0.038%, respectively. In this study, it was confirmed that the legal limitations of the general public and workers were satisfied evens in the event of an accident as a result of evaluating the exposure dose of nearby targets for package shielding loss and radioactive material leakage while transporting GFRW. In the future, the types of accidents will be subdivided into falling, fire, and transportation, and detailed evaluation will be conducted by applying the resulting accident assumptions to the EP.
        40.
        2022.05 구독 인증기관·개인회원 무료
        Recently, concern regarding disposal of cellulosic material is growing as cellulose is known to produce complexing agent, isosaccharinic acid (ISA), upon degradation. ISA could enhance mobility of some radionuclides, thus increasing the amount of radionuclide released into the environment. Evaluation on the possible impact of the cellulose degradation would be an important aspect in safety evaluation. In this paper, the maximum safe disposal amount cellulose is evaluated considering the disposal environment of silos of 1st phase disposal facility. The key factor governing the impact of cellulose degradation is pH of disposal environment, as cellulose is known to degrade partially at pH above 12.5, and completely at pH above 13. Thus, disposal environment should be analyzed as to determine the extent of degradation. As silos are constructed with large amount of cement, porewater within concrete walls would be of very high pH. However, for high pH porewater to be released into the pores of crushed rock, which is filling up the silos, lower pH groundwater (commonly pH 7) should flow into the silos through the concrete walls. This causes dilution of the high pH concrete porewater, resulting in a lower pH as the silos are filled, reaching to expected pH of 11.8–12.3, which is below cellulose degradation condition. Thus, cellulose degradation is not expected, but to quantitatively evaluate safe disposal amount of cellulose, partial degradation is assumed. Upon literature review, the most conservative ISA concentration, enhancing radionuclide mobility, is determined to be 1.0×10−4 M and to reach this concentration, cellulose mass equivalent to 6wt% of cement of the repository, is required to be degraded. However, this ratio is derived based on complete degradation of cellulose into ISA, so for partial degradation, degradation ratio and yield ratio of ISA should be considered. Commonly, cellulosic material (e.g. cotton, paper, etc.) has degree of polymerization (DP) between 1,000–2,000, and with this DP, degradation ratio is estimated to be about 10%. Furthermore, yield ratio of ISA is known to be 80%. Considering all these aspects, about 1.79×107 kg of cellulose could be disposed, which if converted into number of drums, considering cellulose content of dry active waste, more than 100,000 drums (200 L) could be disposed with negligible impact on safety. Based on the result, negligible impact of cellulose degradation is expected for safety of 1st phase disposal facility. In future, this study could be used as fundamental data for revising waste acceptance criteria.
        1 2 3 4 5