검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 115

        1.
        2023.11 구독 인증기관·개인회원 무료
        Kori Unit 1 was permanently shut down in 2017 and is currently being prepared for decommissioning. Decommissioning waste generated during the decommissioning of a nuclear power plant has the characteristic of being generated in large quantities over a short period. Therefore, if proper management is not carried out, abnormal situations (i.e., unauthorized disposal, diversion, etc.) may occur. According to IAEA General Safety Report Part 6, radioactive waste shall be managed for all waste streams in decommissioning. This means ensuring that all waste streams are managed by the recorded inventory of all decommissioning waste and verifying that the recorded inventory is reasonable. The radioactive waste management has been managed in units such as mass and radioactivity. However, in the case of decommissioning waste, the amount is very large, so management by radioactivity is expected to have limitations. Therefore, in this study, a simple test was conducted to verify the decommissioning waste generated by a hypothetical scenario by mass. In this study, establish a scenario assuming various flows of decommissioning waste expected to be generated and calculate the expected inventory of decommissioning waste using Microsoft Excel. Specifically, using “Material Unaccounted For” (MUF), a material balance equation in IAEA Services Series 15, Nuclear Material Accounting Handbook, the error inventory was calculated as the difference between the physical inventory of decommissioning waste in the area and the ending inventory. We propose a simple test scenario to verify the flow of decommissioning waste by verifying that the error inventory reasonably matches the set allowable error. This study aims to verify the inventory of decommissioning waste using the material balance methodology used for nuclear material accounting. It is expected that the safety and reliability of the nuclear power plant decommissioning process can be secured by verifying that the total inventory of equipment before decommissioning and the inventory of remaining equipment and decommissioning waste after decommissioning are reasonably consistent.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The post-closure safety assessment of a repository is typically conducted over an extensive timescale from ten thousand to a million years. Considering that biosphere ecosystems may undergo significant changes over such lengthy periods, it is essential to incorporate the long-term evolution of the biosphere into the safety assessment. Climate change and landscape development are identified as critical drivers with the potential to impact the hydrogeological and hydrogeochemical characteristics of the biosphere. These changes can subsequently alter the migration patterns of radionuclides through the biosphere and influence human exposure doses. Therefore, this study formulates scenarios within the context of long-term biosphere evolution. We examine biosphere assessment processes employed in other countries and conduct a comparative study on scenario conditions. For example, biosphere assessment in Finland has identified sea-level changes and land-use alterations as significant factors in the long-term evolution of the biosphere. These factors are linked to Features, Events, and Processes (FEPs) associated with climate change and human activities. Sea-level changes are related to FEPs regarding climate change, land uplift, and shoreline displacement, while land-use changes are based on human activity-related FEPs (e.g., crop type, livestock and forest management, well construction, and demographics). Based on the literature review, this study has configured long-term evolution scenarios for the safety assessment of a deep geological repository for spent fuels.
        3.
        2023.11 구독 인증기관·개인회원 무료
        According to the analysis of the Korean Radioactive Waste Society, saturation of nuclear power plant temporary storage is expected sequentially from 2031, and accordingly, the need for highlevel radioactive waste disposal facilities has emerged. In order to establish a repository for high-level radioactive waste, the performance and safety analysis of the repository must be conducted in compliance with regulatory requirements. For safety analysis, it needs a collection of arguments and evidence. and IAEA defined it as ‘Safety case’. The Systematic method, which derives scenarios by systematizing and combining possible phenomena around the repository, is widely used for developing Safety case. Systematic methods make use of the concept of Features, Events and Processes (FEP). FEP identifies features that affect repository performance, events that can affect a short period of time, and processes that can have an impact over a long period of time. Many countries, such as Finland, Sweden, Japan, United States, etc., are in process of licensing disposal facilities by using ‘Safety case’. And they then develop their own project-specified FEP lists and employ them for performing safety assessments. However, the systematic procedure for generating scenarios for safety evaluation is not clearly defined. According to the International Atomic Energy Agency (IAEA) Safety Standards Series (SSG- 23), the bottom-up method is an approach for conducting safety analysis using Features, Events, and Processes (FEPs). However, the process of how each FEP is utilized to establish a scenario for safety evaluation remains unclear. Additionally, there exists not only a bottom-up approach for generating scenarios using FEPs, but also a hybrid scenario development method that incorporates a top-down approach based on safety functions. Each country address scenario derivation in accordance with the adopted hybrid method. Nevertheless, a challenge arises in its application due to discrepancies between their approach and the hybrid approach specific which we are going on. Hence, this study introduces the FEP integration methodology for generating scenarios based on the hybrid scenario development method using the FEP list.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear power generation is expected to be enlarged for domestic electricity supply based on the 10th Basic Plan of Long-Term Electricity Supply and Demand. However, the issues on the disposal of spent nuclear fuel or high-level radioactive waste has not been solved. KBS-3 concept of the deep geological disposal and pyroprocessing has been investigated as options for disposal and treatment way of spent nuclear fuel. In other way, the radionuclide management process with 6 scenarios are devised combining chlorination treatment and alternative disposal methods for the efficient disposal of spent nuclear fuel. Various scenarios will be considered and comprehensively optimized by evaluation on many aspects, such as waste quantity, radiotoxicity, economy and so on. Level 0 to 4 were identified with the specialized nuclide groups: Level 0 (NFBC, Hull), Level 1 (Long-lived, volatile nuclides), Level 2 (High heat emitting nuclides), Level 3 (TRU/RE), Level 4 (U). The 6 options (Op.1 to 6) were proposed with the differences between scenarios, for examples, phase types of wastes, the isolated nuclide groups, chlorination process sequences. Op.1 adopts Level 0 and 1 to separate I, Tc, Se, C, Cs nuclides which are major concerns for long-term disposal through heat treatment. The rest of spent nuclear fuel will be disposed as oxide form itself. Op.2 contains Sr separation process using chlorination by MgCl2 and precipitation by K2CO3to alleviate the burden of heat after heat treatment process. U/TRU/RE will be remained and disposed in oxide form. Op.3 is set to pyroprocessing as reference method, but residual TRU/RE chlroides after electrorefining will be recovered as precipitates by K3PO4. Op.4 introduces NH4Cl to chlorinate TRU/RE from oxides after Op.2 applied and precipitates them. TRU/RE/Sr will be simultaneously chlorinated by NH4Cl without MgCl2 in Op.5. Then, chlorinated Sr and TRU/RE groups will be separated by post-chlorination process for disposal. But, chlorinated Sr and TRU/RE are designed not to be divided in disposal steps in Op.6. In this study, the mass flow analysis of radionuclide management process scenarios with updated process variables are performed. The amount and composition of wastes by types will be addressed in detail.
        5.
        2023.11 구독 인증기관·개인회원 무료
        Understanding the dispersion of xenon isotopes following a nuclear test is critical for global security and falls within the remit of both the Comprehensive Nuclear-Test-Ban Treaty (CTBT) and the International Noble Gas Experiment (INGE). This paper aims to show if it is possible to discriminate the source of xenon releases based on the atmospheric dispersion of xenon isotopes using HYSPLIT. Using ORIGEN and SERPENT simulations, four released scenarios are defined with four different fractionation times (i.e., 1 hour, 1 day, 10 days, and 30 days) after a 1kt TNT equivalent 235U explosion event. These time-delayed release scenarios were selected to certify the possibility of mis-determining xenon release source. We use the Lagrangian dispersion model for atmospheric dispersion to predict the concentration distribution of xenon isotopes under each scenario. The model allows us to better understand how these isotopes would distribute over time and space, offering valuable data for real-world detection efforts. To our knowledge, there have been no researches on the analysis of xenon isotopic ratios considering atmospheric dispersion. In this work, we focused on the atmospheric dispersion using HYSPLIT to characterize the xenon isotopic ratios from nuclear tests. In addition, we compared the xenon isotopic ratios obtained from the atmospheric dispersion with those from ORIGEN calculations, which would be helpful to discriminate the source of the xenon releases.
        7.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to solve the rapidly increasing domestic delivery volume and various problems in the recent metropolitan area, domestic researchers are conducting research on the development of “Urban Logistics System Using Underground Space” using existing urban railway facilities in the city. Safety analysis and scenario analysis should be performed for the safe system design of the new concept logistics system, but the scenario analysis techniques performed in previous studies so far do not have standards and are defined differently depending on the domain, subject, or purpose. In addition, it is necessary to improve the difficulty of clearly defining the control structure and the omission of UCA in the existing STPA safety analysis. In this study, an improved scenario table is proposed for the AGV horizontal transport device, which is a key equipment of an urban logistics system using underground space, and a process model is proposed by linking systematic STPA safety analysis and scenario analysis, and UCA and Control Structure Guidelines are provided to create a safety analysis.
        4,000원
        8.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Social welfare facilities are used by a wide range of local residents, including vulnerable populations such as the elderly, children, and people with disabilities. During emergencies like fires, confusion can arise as these individuals try to evacuate. Evacuation simulation results have shown that utilizing evacuation systems based on specific evacuation scenarios can significantly decrease the time required for evacuation compared to general evacuation procedures. By anticipating potential fires based on changes in social and facility environments, appropriate evacuation scenarios can be developed and applied to evacuation systems, thus contributing to the safety and security of individuals during emergencies. In conclusion, for social welfare facilities that serve a large number of people, it is necessary to expand the focus on performance-based design depending on the size of the facility, and to continuously develop and train for appropriate evacuation scenarios that align with changing facility environments.
        4,000원
        9.
        2023.05 구독 인증기관·개인회원 무료
        RUCAS (Recycling-Underlying Computational Dose Assessment System), a dose assessment program based on the RESRAD-RECYCLE framework, is designed to evaluate dose for recycling scenarios of radioactive waste in metals and concrete. To confirm the validity of the recycling scenarios provided by RUCAS, comparative evaluations will be conducted with RESRAD-RECYCLE for metal radioactive waste recycling scenarios and with MicroShield® for concrete radioactive waste recycling scenarios. In the evaluation of metal recycling scenarios without shielding, RUCAS showed similar results when compared to both MicroShield® and RESRAD-RECYCLE. This validates the function of dose assessments using RUCAS for metal recycling scenarios. However, when shielding was present, RUCAS produced results that were comparable to MicroShield®, but differed from those of RESRAD-RECYCLE. The underestimation of dose values up to 1.66E+08 times difference by RESRAD-RECYCLE could potentially decrease reliability and safety in evaluated doses, further emphasizing the importance of RUCAS. Because validation is also necessary for the expanded calculation capabilities resulting from methodological changes of RUCAS (i.e., various radiation source geometries), based on prior validations, it was determined that additional validations are required for different radiation source materials and shielding conditions. In case where the radiation source and shielding materials were identical, RUCAS and MicroShield® produced similar results according to both the Kalos et al. (1974) and Lin and Jiang (1996) methodologies. This demonstrates that the that differences in methodology are inconsequential when considering the same source and shielding materials. However, when the atomic number of the radiation source materials was larger than that of shielding material (HZ-LZ condition), RUCAS obtained results similar to MicroShield® only for the Kalos et al. (1974) methodology. While Lin and Jiang (1996) methodology yield higher results than MicroShield®. Lastly, in case where the atomic number of the radiation source material was smaller than that of the shielding material (LZ-HZ condition,) both methodologies yielded results comparable to MicroShield®. In conclusion, the validity of RUCAS’s shielding calculations has been verified, confirming improvements in dose assessment compared to RESRAD-RECYCLE. Additionally, we observed that shielding effectiveness calculations differ depending on the methodology of build-up effect. If the validity of these methodologies is confirmed, it is expected that selecting the most advantageous methodology for each condition will enable more rational dose assessments. Consequently, in future research, we plan to evaluate the validity of Lin and Jiang (1996) methodology using particle transport codes based on the Monte Carlo method, such as MCNP and Geant 4, rather than MicroShield®.
        10.
        2023.05 구독 인증기관·개인회원 무료
        Two sets of analyses for the cases of groundwater release to well and sea ecosystems were conducted for the environmental impact assessment of high-level radioactive waste disposal facilities. After obtaining the respective BDCF (Biosphere Dose Conversion Factor) results for the scenarios of well-farming and marine water fishing using different biosphere assessment conceptual models implemented in ECOLEGO, they were compared each other. The purposes of these analyses are to identify reference generic biosphere conceptual models and to get insight on model uncertainty. In this study, the endpoint used for the comparison of the ECOLEGO biosphere models was the socalled Biosphere Dose Conversion Factor (BDCF), which is defined as the maximum value of the total dose to the exposed group, in Sv/yr, resulting from a continuous unit release of 1 Bq/yr during the whole simulation time either to the well compartment (BDCF_Well) or to the marine water compartment (BDCF_Sea). The radionuclides considered in the comparison were Cs-137, I-129, Nb-94, Ni-59, Ni- 63, Sr-90 and Tc-99. The conceptual models used in the biosphere assessment of the releases to a well are based on models that have been used by the DOE (simple-soil model) and SKB (complex-soil model) in safety assessments of radioactive waste repositories, respectively. Difference between two conceptual models used in the assessment of the releases to a sea is the number of compartments representing the sea; i.e., one model represents the sea with one compartment for the water and one for the sediment (singlecompartment model), whereas the alternative model uses two compartments for the water and the sediments: one for the inner coast and one for the outer coast (double-compartment model). The results of the BDCF_Well to a farmer obtained with the DOE and SKB models are shown to be very close to each other. Despite the differences in conceptual models and parameters, the results are within a maximum difference of a factor of 4. The results from the SKB model were higher for all radionuclides. The values of the BDCF_Sea obtained with the single- and double-compartment models are shown to be larger differences with a maximum order of 2. For all studied radionuclides, the double-compartment model produces higher BDCFs than does the single-compartment model. The differences would be due to activity concentrations in both water and sediments. Since the hydrodynamic behavior assumed for flow in the sea could significantly influence the dilution volumes and hence the concentrations, it is found that site-specific investigations are necessary to establish an appropriate marine biosphere conceptual model.
        11.
        2023.05 구독 인증기관·개인회원 무료
        To obtain a license for a deep geological disposal repository for spent nuclear fuel, it is necessary to perform a safety assessment that quantifies the radiological impact on the environment and humans. One of the key steps in the safety assessment of a deep geological repository is the development of scenarios that describe how the repository evolves over the performance period and how events and processes affect performance. In the field of scenario development, demonstrating comprehensiveness is critical, which describes whether all factors that are expected to have a significant impact on the repository's performance have been considered. Mathematical proof of this is impossible. However, If the scenario development process is logical and systematic, it can support the claim that the scenario is comprehensive. Three primary approaches are being considered for scenario development: ‘Bottomup’, ‘Top-down’, and ‘Hybrid’. Hybrid approach provides a more systematic and structured process by considering both the FEPs (Features, Events, Processes) and safety functions utilized in the bottomup and top-down approaches. Many countries that develop recent scenarios prefer demonstrating scenario comprehensiveness using a hybrid approach. In this study, a systematic and structured scenario development process of a hybrid approach was formulated. Based on this, sub-scenarios were extracted that describe the phenomena occurring in the repository over the performance period, categorized by period. By integrating and screening the extracted sub-scenarios, a scenario describing the phenomena occurring over the entire period of disposal was developed.
        12.
        2023.05 구독 인증기관·개인회원 무료
        In the wake of the Fukushima NPP accident, research on the safety evaluation of spent fuel storage facilities for natural disasters such as earthquakes and tsunamis has been continuously conducted, but research on the protection integrity of spent fuel storage facilities is insufficient in terms of physical protection. In this study, accident scenarios that may occur structurally and thermally for spent fuel storage facilities were investigated and safety assessment cases for such scenarios were analyzed. Major domestic and international institutions and research institutes such as IAEA, NEA, and NRC provide 13 accident scenario types for Spent Fuel Pool, including loss-of-coolant accidents, aircraft collisions, fires, earthquakes. And 10 accident scenario types for Dry Storage Cask System, including transportation cask drop accidents, aircraft collisions, earthquakes. In the case of Spent Fuel Pool, the impact of the cooling function loss accident scenario was mainly evaluated through empirical experiments, and simulations were performed on the dropping of spent nuclear fuel assembly using simulation codes such as ABAQUS. For Dry Storage Cask System, accident scenarios involving structural behavior, such as degradation and fracture, and experimental and structural accident analyses were performed for storage cask drop and aircraft collision accidents. To evaluate the safety of storage container drop accidents, an empirical test on the container was conducted and the simulation was conducted using the limited element analysis software. Among the accident scenarios for spent fuel storage facilities, aircraft and missile collisions, fires, and explosions are representative accidents that can be caused by malicious external threats. In terms of physical protection, it is necessary to analyze various accident scenarios that may occur due to malicious external threats. Additionally, through the analysis of design basis threats and the protection level of nuclear facilities, it is necessary to derive the probability of aircraft and missile collision and the threat success probability of fire and explosion, and to perform protection integrity evaluation studies, such as for the walls and structures, for spent fuel storage facilities considering safety evaluation methods when a terrorist attack occurs with the derived probability.
        13.
        2023.05 구독 인증기관·개인회원 무료
        A person who performs or plans to conduct a physical protection inspection as stipulated by the law, the act on physical protection and radiological emergency, should obtain an inspector’s ID card certified and authorized by Nuclear Safety and Security Commission Order No.137 (referred to as Order 137). In addition, according to Order 137, KINAC has been operating some training courses for those with the inspector’s ID card or intending to acquire it. Also, strenuous efforts have been put to incrementally elevate their inspection related expertise. Since Republic of Korea has to import uranium enriched less than 20% in order to manufacture fuels of nuclear reactors in domestic and abroad, the physical protection for categorization III nuclear material in transit is significantly important along with an increase in transport. The expertise of inspectors should be constantly needed to strengthen as the increase in transport leads to an increase in inspection of nuclear material in transit. We have suggested a special way to improve the inspector’s capacities through Virtual Reality technology (VR). A 3-Dimensional virtual space was designed and developed using a 3-axis simulator and VR equipment for practical training. HP’s Reverb G2 product, which was developed in collaboration with VALVE Corporation and MicroSoft, was used as VR equipment, and the 3-axis motion simulator was developed by M-line STUDIO corp. in Korea for the purpose of realizing virtual reality. The training scenarios of transport inspection consist of three parts: preparation at the shipping point, transport in route including stops and handover at the receiving point. At the departure point, scenario of the transport preparation is composed with the contents of checking the transport-related documents which should be carried by shipper and/or carrier during transport and confirming who the shipper and/or carrier is. Second, scenario is designed for inspector to experience how carrier and/or shipper protect the nuclear material during transport or stops for rests or contingency and how they communicate with each other during transport. Lastly, scenario is developed focusing on key check items during handover of responsibilities to the facility operator at the destination. Those training scenarios can be adopted to strengthen the capabilities of those with inspector’s ID card of physical protection in accordance with Order 137 and to help new inspectors acquire inspectionrelated expertise. In addition, they can be used for domestic education to promote understanding of nuclear security, or may be used for education for people overseas for the purpose of export of nuclear facilities.
        14.
        2023.05 구독 인증기관·개인회원 무료
        According to the “Law on protection and response measures for nuclear facilities and radiation”, Nuclear Power Plant (NPP) licensees should conduct periodic exercises based on hypothetical cyberattack scenarios, and there is a need to select significant and probable ones in a systematic manner. Since cyber-attacks are carried out intentionally, it is difficult to statistically specify the sequences, and it is not easy to systematically establish exercise scenarios because existing engineering safety facilities can be forcibly disabled. To deal with the above situation, this paper suggests a procedure using the Probabilistic Safety Assessment (PSA) model to develop a cybersecurity exercise scenario. The process for creating cyber security exercise scenarios consists of (i) selecting cyber-attack-causing initiating events, (ii) identifying digital systems, (iii) assigning cyber-attack vectors to a digital system, (iv) determining and adding type for operator’s response, (v) modifying a baseline PSA model, and (vi) extracting top-ranked minimal cut sets, and (vii) selecting a representative scenario. This procedure is described in detail through a case study, an expected cyber-attack scenario General Transient-Anticipated Transient Without Scram (GTRN-ATWS). It refers to an accident scenario for ATWS induced by GTRN. Since ATWS is targeted for cyber training in some NPPs, and GTRN is one of the most common accidents occurring in NPPs, GTRN-ATWS was chosen as an example. As for the cyber-attack vector, portable media and mobile devices were selected as examples based on expert judgment. In this paper, only brief examples of GTRN-ATWS events have been presented, but future studies will be conducted on an analysis of all initiating events in which cyber-attacks can occur.
        16.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Various social and environmental problems have recently emerged due to global climate change. In South Korea, coniferous forests in the highlands are decreasing due to climate change whereas the distribution of subtropical species is gradually increasing. This study aims to respond to changes in the distribution of forest species in South Korea due to climate change. This study predicts changes in future suitable areas for Pinus koraiensis, Cryptomeria japonica, and Chamaecyparis obtusa cultivated as timber species based on climate, topography, and environment. Appearance coordinates were collected only for natural forests in consideration of climate suitability in the National Forest Inventory. Future climate data used the SSP scenario by KMA. Species distribution models were ensembled to predict future suitable habitat areas for the base year (2000-2019), near future (2041-2060), and distant future (2081-2100). In the baseline period, the highly suitable habitat for Pinus koraiensis accounted for approximately 13.87% of the country. However, in the distant future (2081- 2100), it decreased to approximately 0.11% under SSP5-8.5. For Cryptomeria japonica, the habitat for the base year was approximately 7.08%. It increased to approximately 18.21% under SSP5-8.5 in the distant future. In the case of Chamaecyparis obtusa, the habitat for the base year was approximately 19.32%. It increased to approximately 90.93% under SSP5-8.5 in the distant future. Pinus koraiensis, which had been planted nationwide, gradually moved north due to climate change with suitable habitats in South Korea decreased significantly. After the near future, Pinus koraiensis was not suitable for the afforestation as timber species in South Korea. Chamaecyparis obtusa can be replaced in most areas. In the case of Cryptomeria japonica, it was assessed that it could replace part of the south and central region.
        4,300원
        17.
        2022.10 구독 인증기관·개인회원 무료
        The IAEA recommended considerations for exemption regulations of consumer products containing greater amounts of radioactive isotopes than the amounts specified for generic exemption. One of the major considerations is the expected exposure dose should be less than 10 μSv/y and 1 mSv/y for general cases and low probability cases, respectively, in all predictable scenarios. Under this recommendation, many countries evaluated the radiation dose for exposure scenarios of various products in consideration of the national circumstances and, then, established their own specific exemption regulation. In Republic of Korea, the “Regulation on substances excluded from radioactive isotopes” was legislated to specify consumer products excluded from regulation. However, as the usage status and product specifications has changed over time, it is necessary to periodically verify the validity of the regulation criteria in the view of exemption justification. In this study, we developed the use and disposal scenarios in consideration of the domestic use of thorium-containing gas mantle and evaluated radiation dose of each scenario accordingly. The gas mantles are used as a wick for gas lanterns and the maximum activity of natural thorium contained among the currently available gas mantles is 12.5 kBq. Radioactive isotopes in the decay chain of natural thorium can be divided into three groups according to their physical characteristics, and exposure routes suitable for each group were considered in dose calculation. Currently, most gas mantles are installed in camping lanterns. Therefore, we developed use scenarios related to camping. The average number of camping trips and time spent at the campground were set by the data from Korea Tourism Organization. Tent sizes and vehicle specifications were determined by referring to surveys and products in Korea. The used gas mantle is disposed of in a garbage bag for general waste and transported to landfill or incinerator. We determined the amount of gas mantle discarded in landfill and incinerator by the data from Korea Environment Corporation. The exposure time and amount handled by an individual were determined by considering the number of waste collection vehicles, landfills, and incinerators. Although we assumed the maximum activity of the gas mantle for conservative evaluation, the calculated radiation doses for the use and disposal scenarios were below the general requirement (i.e., 10 μSv/y) in all scenarios.
        18.
        2022.10 구독 인증기관·개인회원 무료
        The goal of the decommissioning of nuclear facilities is to remove the regulations from the Nuclear Safety Act. The media that can be considered at the time of remediation stage may usually include soils, buildings, and underground materials. In addition, underground materials may largely be the groundwater, buried pipes, and concrete structures. In fact, it can be seen that calculations of the Derived Concentration Guideline Level (DCGL) and ALARA action levels was conducted in the case of overseas decommissioning experiences of Nuclear Power Plants (NPPs). Therefore, the aim of this study is to review the remediation activities and scenarios applied for the calculation of ALARA action level from the overseas decommissioned nuclear power plants. Media that can be considered for DCGL calculation at the time of license termination may differ from site to site. If the DCGL for the target media was derived, whether additional remediation actions are required under the DCGL value from the ALARA perspective was identified by calculating the ALARA action levels in the case of the U.S. The activities to determine whether additional clean-up is justified under the regulatory criteria are remediation actions which is dependent on the material contaminated. Therefore, the typical materials that can be subjected to remediation are soils and structure basements in the overseas cases. Remediation actions involved in the decommissioning process on the structure surfaces can be typically considered to be scabbling, shaving, needle guns, chipping, sponge and abrasive blasting, pressure washing, washing and wiping, grit blasting, and removal of contaminated concrete. For the cost-benefit analysis of the media subject to DCGL calculation, it is necessary to assume a scenario for the remediation actions of the target media. The scenarios can be largely divided into two types. Those are basement fill and building occupancy scenario. In basement fill mode, buildings and structures on the site are removed, and the effect of receptors from the contamination of the remaining structures is considered. In the building occupancy mode, it is assumed that the standing building remains on the site after the remediation stage. It is a situation to evaluate how the effect of additional remediation actions changes as the receptors occupy inside of the contaminated building. Therefore, parameters such as population density, area being evaluated, monetary discount rate, numbers of years, etc. can be set and assessed according to the scenarios.
        20.
        2022.05 구독 인증기관·개인회원 무료
        In this study, the current situation of recycling domestic and foreign metal clearance waste was reviewed to suggest the optimal recycling scenario for metal clearance waste that occurs the most when decommission nuclear power plants. Factors that can directly or indirectly affect the recycling of metal clearance waste were analyzed and evaluation criteria that can be used to evaluate optimal recycling measures were prepared. Using this, a scenario for recycling the optimal metal clearance waste suitable for the domestic environment was proposed. As a result of comparing/reviewing the importance of the first level of the evaluation criteria, public acceptance, national policy, and regulatory requirements were evaluated as the most important ones, and recycling acceptance and regulatory requirements were evaluated as the most important the second level of evaluation criteria. As a result of reviewing the clearance waste recycling scenario, it was evaluated that unrestricted recycling scenario was preferred. This may be because the survey subjects are composed of experts in the nuclear power field, so they know recycling of clearance waste in general industries does not significantly affect radiation safety. However even if it is clearance waste, the public may feel reluctant to recycle just because it was discharged from nuclear power plants, so policy and institutional improvements are needed to reassure the public along with the scientific safety of clearance waste. In addition, in order to improve public acceptance, it seems necessary to prepare specific measures to ensure the participation of public in the entire decommissioning process, share related information, and disclose all routes from generation to disposal of decommissioning waste. Considering that research on domestic clearance waste recycling options has not been activated, this study is significant in that it derives a scenario for recycling metal clearance waste that can be implemented. Also, it is expected that the evaluation criteria derived from this study will be used significantly when establishing a radioactive waste management strategy.
        1 2 3 4 5