검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 42

        3.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Various types of optical materials and devices used in special environments must satisfy durability and optical properties. In order to improve the durability of zinc sulfide multispectral (MS ZnS) substrates with transmission wavelengths from visible to infrared, Ge-Sb-Se-based chalcogenide glass was used as a sealing material to bond the MS ZnS substrates. Wetting tests of the Ge-Sb-Se-based chalcogenide glass were conducted to analyze flowability as a function of temperature, by considering the glass transition temperature (Tg) and softening temperature (Ts). In the wetting test, the viscous flow of the chalcogenide glass sample was analyzed according to the temperature. After placing the chalcogenide glass disk between MS ZnS substrates (20 × 30 mm), the sealing test was performed at a temperature of 485 °C for 60 min. Notably, it was found that the Ge-Sb-Se-based chalcogenide glass sealed the MS ZnS substrates well. After the MS ZnS substrates were sealed with chalcogenide glass, they showed a transmission of 55 % over 3~12 μm. The tensile strength of the sealed MS ZnS substrates with Ge-Sb-Se-based chalcogenide glass was analyzed by applying a maximum load of about 240 N, confirming its suitability as a sealing material in the far infrared range.
        4,000원
        4.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Sealing treatment is a post-surface treatment of the plasma spray coating process to improve the corrosion resistance of the coating material. In this study, the effect of the sealing on the corrosion resistance and adhesive strength of the plasma spray-coated alumina coatings was analyzed. For sealing, an epoxy resin was applied to the surface of the coated specimen using a brush. The coated specimen was subjected to a salt spray test for up to 48 hours and microstructural analysis revealed that corrosion in the coating layer/base material interface was suppressed due to the resin sealing. Measurement of the adhesive strength of the specimens subjected to the salt spray test indicated that the adhesive strength of the sealed specimens remained higher than that of the unsealed specimens. In conclusion, the resin sealing treatment for the plasma spray-coated alumina coatings is an effective method for suppressing corrosion in the coating layer/base material interface and maintaining high adhesive strength.
        4,000원
        5.
        2022.10 구독 인증기관·개인회원 무료
        To ensure the peaceful use of nuclear energy, nuclear safeguards are applied in member states of the International Atomic Energy Agency (IAEA) under the Non-Proliferation Treaty. The two major considerations in implementing nuclear safeguards are effectiveness and efficiency. In terms of efficiency, the IAEA has a great interest in using containment and surveillance (C/S) technology to maintain continuity of knowledge. A representative means of C/S technology is a sealing system to detect tampering. The existing sealing systems used by the IAEA are of limited functionality in realtime verification purposes. To address this limitation, the present study develops a real-time verification sealing system. First, we analyzed the design requirements of a sealing system proposed by various institutions including the IAEA, the U.S. Nuclear Regulatory Commission, and a number of national laboratories and companies. Then, we identified the appropriate design requirements of this system for real-time verification. Finally, the prototype system was developed and tested based on the identified design requirements. The validation tests of the prototype system were performed for anticipated environmental conditions, radiation resistance, and safeguards functionality. Additionally, we are developing user-friendly verification software. The software validation is planned to perform for functionality, performance efficiency, and security. The next step is to develop a commercialized realtime verification sealing system based on the results of validation tests. Using this commercialized system, we plan to evaluate the performance in various actual use cases. Such a system is expected to significantly enhance the efficiency of nuclear safeguards.
        7.
        2021.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the fabrication of joined materials between anodized aluminum alloy and polymer, the performance of the metalpolymer joining is greatly influenced by the chemical properties of the oxide film. In a previous study, the dependence of physical joining strength on the thickness, structure, pore formation, and surface roughness of films formed on aluminum alloys is investigated. In this study, we investigated the effect of silane coupling treatment on the joining strength and sealing performance between aluminum alloy and polymer. After a two-step anodization process with additional treatment by silane, the oxide film with chemically modified nanostructure is strongly bonded to the polymer through physical and chemical reactions. More specifically, after the two-step anodization with silane treatment, the oxide film has a three-dimensional (3D) nanostructure and the silane components are present in combination with hydroxyl groups up to a depth of 150 nm. Accordingly, the joining strength between the polymer and aluminum alloy increases from 29 to 35 MPa, and the helium leak performance increases from 10−2-10−4 to 10−8-10−9 Pa m3 s−1.
        4,000원
        9.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 심부시추공 처분을 위한 밀봉시스템으로서 Gibb’s Group에 의해 제안된 화강암 용융 및 재결정화에 의한 시 추공 밀봉 방안에 대해 KURT 화강암을 대상으로 실현 가능성을 확인하였다. 화강암 용융 실험은 첨가제를 이용한 상압용 융시험과 물의 기화에 의한 수증기 고압용융시험 2가지로 수행되었다. 상압 용융시험 결과, KURT 화강암 분말에 NaOH를 첨가하여도 기본 융점보다 낮은 1,000℃에서 부분용융이 시작되었으며, 냉각된 용융물에서 침상결정의 형성을 확인하였다. 수증기 고압시험은 물의 첨가량에 따라 수증기압을 달리하며 최대 400 bar의 수증기압까지 용융 시험이 진행되었다. KURT 화강암은 낮은 수증기압에도 1,000℃에서 부분 용융이 시작되었으나, 물이 많이 첨가된 높은 수증기압에서 화강암의 부분 용융은 보이지 않았다. 따라서 소량의 수증기가 있는 고압상태가 화강암의 용융에 적합한 것으로 판단되었다. 한편, 고온고압의 수증기는 내부식성의 반응기 벽을 부식시켜, 고온의 수증기에 의한 처분용기의 부식 문제가 발생되었다.
        4,300원
        11.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at 25℃. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately -18℃) for 24 hours, and then allowing it to thaw at 60℃ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS: Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed. Keywords Sealing Tape, Crack Resistance, Freeze-Thaw, Tensile Adhesion
        4,000원
        12.
        2018.05 구독 인증기관·개인회원 무료
        Asphalt pavement is covered over 90% of Korea road network. There are various causes for damage to asphalt pavement such as crack, stripping, and joints et al. A longitudinal joint occurs in an asphalt pavement when a new batch of hot-mix asphalt (HMA) is laid adjacent to an existing lane for maintenance of asphalt road. It is required to pave the width of a road in multiple lanes because paving the full width of the pavement in a single pass is usually impossible. The durability of longitudinal joints in asphalt pavements is strongly related with the pavement service life. This longitudinal joint is generated attachment sites where the old pavement surface and the new pavement surface are adhered to each other. In the short period of time, early cracks are generated due to the adherence failure of the new and old pavement. Rainwater penetrates into cracks at the time of rainfall. The cracks are enlarged to be connected by labeling and pothole generation, resulting in durability of the pavement deterioration of its service life. Therefore, there is a desperate need for a preventive material that can prevent the expansion of cracks in the longitudinal joint. Compare performance sealing tape with tack coating material, the research team is adopted freeze-thaw and wheel tracking loading test methods. The sealing tape shows the better performance than tack coating material under traffic loading and freeze-thawing test.
        13.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to use PUR/CuO Composites as the sealing materials for ships equipment, this research has been performed. PUR/CuO composites are produced by using ultrasonic waves. The increase of CuO leads to increase in the tensile strength and shore hardness. The cumulative wear volume shows a tendency to increase in proportional to sliding distance. As the CuO particles of these composites indicated, the friction coefficient was slightly increased. The major failure mechanisms were lapping layers, deformation of matrix, plowing, debonding of particles and microcracking by scanning electric microscopy photograph of the wear tested surface.
        4,000원
        14.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        V-Coupling is commonly used as a mechanical fastener to connect the turbine housing and the bearing housing in a turbocharger assembly. The back plate between the turbine housing and bearing housing would be compressed by tightening torque of the coupling bolt in order to protect the gas leakage at a turbocharger’s operation. This paper presents the numerical and experimental method for the prediction of the mechanical behavior and sealing performance of the coupling system. The test was conducted to verify the finite element model by measuring the circumferential and axial direction strains of V-coupling under turbocharger’s assembly load. Finite element analysis was carried out to obtain the mechanical strains and contact pressures of the coupling. It can be seen that the analysis results are in good agreement with the measured strains from the coupling’s assembly load. And, the pressure distribution of the back plate also presented to identify the sealing performance of the turbocharger’s coupling system.
        4,000원
        15.
        2016.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have investigated a glass-forming region of V2O5- P2O5-ZnO glass and the effects of the addition of modifier oxides (B2O3) to the glass systems as a sealing material to improve the adhesion between the glass frits and a soda lime substrate. Thermal properties and coefficient of thermal expansion were measured using a differential scanning calorimetry, a dilatometer and a hot stage microscopy. Structural changes and interfacial reactions between the glass substrate and the glass frit after sintering (at 400 oC for 1 h) were measured by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscope. The results showed that the adhesion strength increases as the content of B2O3 at 5 mol% increases because of changes in the structural properties. It seems that the glass structures change with B2O3, and the Si4+ ions from the substrate are diffused to the sealing glass. From these results, we could understand the mechanism of strengthening of the adhesion of soda lime silica substrate by ion-diffusion from the substrate to the glass.
        4,000원
        16.
        2015.10 구독 인증기관·개인회원 무료
        This study is examining the potential benefits of routing in hot mix asphalt pavement prior to installing crack sealant. (1) Definition. Crack sealing and crack filling are two separate activities. While both crack sealing and crack filling involve placing sealants in pavement cracks, they differ in process. Generally, crack sealing is defined as using a router or saw to create a reservoir in a crack which is then filled with a sealant material. Crack filling is defined as minor crack preparation, such as using an air gun to blow debris out of cracks, prior to installation of the sealant. There is no pavement removed with crack filling. Additionally, crack sealing is performed on working cracks, whereas crack filling is generally the term used to refer to the treatment of nonworking cracks. (2) Implementation. Crack sealing should be carried out on structurally sound pavement which has low pavement distress. The pavement selection consideration should be based on pavement age, pavement and geometric design, pavement selection boundaries, traffic, type and extent of previous maintenance treatments and condition rating. The best candidates for crack sealing are newer pavements which are in the range of 1 to 3 years, and the majority of pavement distress can be found in terms of longitudinal or transverse having slight to moderate crack density. (3) Evaluation. The performance life of a treatment mostly depends on the preparation of crack and the type of the material used. One inspection should be made each year to chart the rate of failure and plan for subsequent maintenance. A mid winter evaluation is highly recommended as it will indicate treatment effectiveness when there is maximum pavement contraction and the crack is near the maximum opening. A small representative sample of the pavement, minimum of 150 m length should be selected for the evaluation. The first step in determining a treatment’s effectiveness is establishing how much of the treatment has failed in relation to the total length of treatment applied: Percent failure = (failed length after treatment / total length of treatment) × 100 After that the treatment’s effectiveness can be determined by subtracting the percentage of treatment failure from 100 percent: Effectiveness = 100 - Percent failure After a number of inspections a graph of effectiveness versus time can be developed. (4) Cost. Crack treatments can be considered as effective if it delays pavement deterioration and extends the pavement service life. Generally, the effective treatment extends the pavement life by two to five years. The effectiveness of rout and seal maintenance depends upon three points: (a) Performance of the sealant materials and appropriate rout width and depth; (b) restraining of crack development and delaying the existing pavement distress; and (c) crack treatment implication period. Chip seal treatment cost 3-14 times more than crack sealing and an overlay cost 8-26 times as much as crack sealing. The cost of crack sealing varies depending on state, materials, whether or not routing is required, and unit being priced.
        17.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, in order to increase surface ability of hardness and corrosion of magnesium alloy, anodizingand sealing with nano-diamond powder was conducted. A porous oxide layer on the magnesium alloy was successfullymade at 85℃ through anodizing. It was found to be significantly more difficult to make a porous oxide layer in themagnesium alloy compared to an aluminum alloy. The oxide layer made below 73℃ by anodizing had no porous layer.The electrolyte used in this study is DOW 17 solution. The surface morphology of the magnesium oxide layer wasinvestigated by a scanning electron microscope. The pores made by anodizing were sealed by water and aqueous nano-diamond powder respectively. The hardness and corrosion resistance of the magnesium alloy was increased by the anod-izing and sealing treatment with nano-diamond powder.
        4,000원
        19.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an aluminum oxide layer for sealing treatment of nano-diamond powder was synthesized byanodizing under constant current. The produced pore size and oxide thickness were investigated using scanning electronmicroscopy. The pore size increased as the treatment time increased, current density increased, sulfuric acid concentra-tion decreased, which is different from the results under constant voltage, due to a dissolution of the oxide layers. Theoxide layer thickness by the anodizing increased as temperature, time, and current density increased. The results of thisstudy can be applied to optimize the sealing treatment process of nano-diamond particles of 4-10 nm to enhance theresistances of corrosion and wear of the matrix.
        4,000원
        20.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fuel Test Loop(FTL) is a facility which could conduct a fuel irradiation test at HANARO (High-flux Advanced Neutron Application Reactor). FTL simulates commercial NPP’s operating conditions such as the pressure, temperature and neutron flux levels to conduct the irradiation and thermo- hydraulic tests. The In-Pile Test Section(IPS) installed in HANARO FTL is designed as a pressure vessel design conditions of 350℃, 17.5MPa. The instrumentation MI-cables for thermocouples, SPND and LVDT are passed through the sealing plug, which is in the pressure boundary region and is a part of instrumentation feedthrough of MI-cable. In this study, the brazing method and performance test results are introduced to the sealing plug with BNi-2 filler metal, which is selected with consideration of the compatibility for the coolant. The performance was verified through the insulation resistance test, hydrostatic test, and helium leak test.
        4,000원
        1 2 3