검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 145

        21.
        2022.05 구독 인증기관·개인회원 무료
        To obtain confidence in the safety of disposal facilities for radioactive waste, it is essential to quantitatively evaluate the performance of the waste disposal facilities by using safety assessment models. Thus, safety assessment models require uncertainty management as a key part of the confidencebuilding process. In application to the numerical modelling, the global sensitivity analysis is widely employed for dealing with parametric and conceptual uncertainties. In particular, the parametric uncertainty can be effectively reduced by minimizing the uncertainty of critical parameters in the safety assessment model. In this paper, the numerical model of each step disposal facility (Silo, Near surface, and Trench type) at Wolsong Low and Immediate Level Waste (LILW) Disposal Center is designed by using a two-dimensional finite element code (COMSOL Multiphysics). In order to determine the critical parameters for non-adsorbed nuclides such as H-3, C-14, Tc-99, we introduced the variance-based sensitivity analysis methodology of the global sensitivity analysis. In the case of Silo type, the density of waste is highly sensitive to the total leakage quantity of all nuclides. Additionally, the initial nuclide concentration of H-3 was identified as another important parameter of H-3. On the other hands, the mass transport coefficient showed a high contribution in C-14 and Tc-99. In other types of disposal facilities, the leaking properties of H-3 are significantly affected by the amount of infiltration water. However, C-14 and Tc-99 were found to be more sensitive to the density of waste.
        22.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        CALMET (California Meteorological Model), which is a meteorological subroutine for an air quality dispersion mode (CALPUFF; California Puff Model), closely related with the land surface structure. In this study, the sensitivity of micro-meteorological parameters including wind speed and roughness height, Albedo, Bowen ratio, soil heat flux, and leaf area index were closely evaluated with change of land-use in relation to urban development. As a result, although no consistent dependence of roughness height on surface wind was found, it showed that high value of surface roughness could lead to the increase of friction velocity, influence the Monin-Obukhov length and the mixing height. At the same time, the increasing Albedo reduced friction velocity and mixing height. Thus, it was concluded for the CALMET modelling that it is necessary to first define the roughness height, Albedo, and Bowen ratio according to land-use.
        4,200원
        23.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to analyze the operators' perception of the allowable price range and the optimal price of kindergarten meals by using the PSM (price sensitivity measurement) technique and provide basic data on calculating kindergarten meal costs reflecting realistic meals. From April to May 2021, 779 kindergartens in Seoul were surveyed, based on 246 (31.6%) of the respondents. According to the survey, kindergarteners spent 3,506 won for meals on average, followed by 3,822 won for kindergarten attached to elementary school, 3,316 won for public kindergartens, and 2,896 won for private kindergartens (p<0.001). The allowed price range for the kindergarten meal service workers was estimated at 3,447~3854 won, 3,447 won for PMC (Point of Marginal Cheapness), and 3,854 won for PME (Point of Marginal Expensiveness). The appropriate cost of the kindergarten meal service provider was 3,950 won for kindergartens attached to elementary school, 3,425 won for public kindergartens, and 3,546 won for private kindergartens.
        4,000원
        24.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 대상은 신축이음장치를 설치하지 않고 상부구조와 교대를 일체화하는 무조인트 교량이다. 무조인트 교량은 국내에 2009년 이후 본격적으로 도입되었다. 공용기간이 짧고 설계, 시공 및 유지관리 경험이 부족하여 장기거동에 대한 신뢰도가 아직은 부족하다. 수치해석을 통해 다수의 교량을 분석하는 경우 수치해석 모델은 안정적인 정확성 유지와 모델 구축의 편의성이 확보되어야 한다. 본 연구에서는 다양한 형식을 가진 무조인트 교량의 수치해석 모델을 선정하기 위해 민감도 해석을 수행하였다. 민감도 해석은 상용 유한요소 프로그램인 MIDAS Civil과 ABAQUS를 사용하여 수행하였다. solid 요소 기반인 모델을 기준으로 하여 구조모델간 평균 및 최대 상대오차를 분석하였다. 해석결과 beam 요소 기반인 모델은 상대오차가 크게 발생하였고 shell 요소 기반인 모델은 상대오차가 아주 미소하였다. 따라서 무조인트 교량의 최적 수치해석 모델은 상대오차에 의한 변위 형상의 유사성과 정밀도를 유지하면서 실용적인 모델인 shell 요소 기반 모델이 가장 적합한 것으로 판단하였다.
        4,000원
        25.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to investigate the perception of the quality of school meals by parents of kindergarten children in Seoul, analyze the acceptance price and the optimal school meal cost using PSM (price sensitivity measurement) techniques, and provide basic data for improving the quality of kindergarten meals. The survey was conducted using descriptive statistics and PSM analysis of the responses of 1,272 parents of 779 kindergarten children belonging to the Seoul Metropolitan Office of Education from April to May 2021 and prior research analysis related to kindergarten meals. 74.1% of the parents surveyed were women, with 61% of children attending kindergartens attached to elementary schools, followed by private kindergartens (28.9%) and public kindergartens (10.1%). According to a study of the quality of meals, private kindergarten parents are highly satisfied with all the quality attributes of meals, such as “sanitation of dining environment” and “nutritionally balanced food” (p<0.001, p<0.01). The analysis of the acceptance price range and the optimal price for school meals showed that there was no significant variation based on the type of kindergarten establishment, with parents' acceptance price range ranging from 3,596 won to 4,454 won with an optimal price of 3,948 won.
        4,000원
        26.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        육상풍력의 보급이 지연되는 가장 큰 원인인 입지애로 문제를 해결하기 위해 육상풍력 사업성 사전 검토 단계에서 입지적 합성을 검토할 수 있도록 육상풍력 입지지도가 개발되었다. 본 연구에서는 육상풍력 입지지도 고도화의 일환으로 산업부, 환경부, 산 림청의 부처간 협의에 따라 풍력자원, 생태·환경 입지요인 24종, 산림 입지요인 21종을 통합하여 육상풍력 입지 적합성을 종합적으로 평가할 수 있는 고려대상 지역 지도를 개발하였다. 고려대상 지역 지도를 분석한 결과 환경·산림 입지 적합성이 모두 상(high)이고 경제성이 확보되는 지역은 조사대상 면적의 4%인 4,032km2로 산정되었으며, 고려대상 지역의 민감도 분석에 의하면 생태·자연도 1등급 및 2등급과 겨울철 조류동시센서스 조사지역의 민감도가 가장 큰 것으로 확인하였다. 이를 통해 육상풍력 입지의 사전 검토를 위한 고려대상 지역 지도의 실효성을 확인하였다.
        4,000원
        29.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Pavement growth (PG) is a phenomenon whereby the overall length of a concrete pavement increases. The increase in length induces an axial compressive force in the concrete pavement slab, resulting in blow-up and damage of adjacent structures, such as a bridge. PG is influenced by several interacting factors, including climatic conditions, pavement materials, joint systems, incompressible particles (IP) infiltrating the joints or cracks in the slab, and an expansion caused by reactive aggregates in the concrete. However, it is difficult to predict PG and blow-up due to various complicated factors. Therefore, in this study, the pavement growth and blow-up analysis (PGBA) package program was developed to predict the PG and blow-up potential. The PGBA can consider the pavement configuration, expansion joint (EJ) configuration, climatic conditions, and design reliability. To evaluate the effects of influencing factors — such as climatic data, EJ configuration, pavement structures and materials, and design reliability — on PG and occurrence time of blow-up, a numerical example was demonstrated and a sensitivity analysis was performed. METHODS : To predict the PG, the concrete temperature was calculated using an appropriate analytical model. The trigger temperature for pavement growth(TTPG) was predicted using a statistical equation that considers pavement age, joint spacing, and precipitation. An analytical solution for estimating the concrete slab movement was performed. Through the calculated TTPG and the amount of PG, the service life of the EJ (width of EJ) can be predicted compared to the allowable width. In addition, by using analytical and finite elements, the safe temperature(Tsafe) for preventing blow-up occurrence was calculated. The blow-up occurrence was assumed to occur when the variation between the concrete temperature and TTPG was larger than Tsafe. RESULTS :As a result of the sensitivity analysis of maximum temperature and precipitation, the temperature and precipitation increase and the EJ service life and possibility of blow-up decrease. Sensitivity analysis was performed on the thermal expansion coefficient, pavement thickness, base layer type, concrete elastic modulus, and joint rotational stiffness in the concrete pavement structure and properties. In the PGBA program, the coefficient of thermal expansion and the type of base layer significantly affect the EJ life, as do the possibility of blowup and the elastic modulus. The joint rotational stiffness and pavement thickness had little effect on the EJ life but were found to affect the possible timing of blow-up. As a result of the PGBA sensitivity analysis of the width and spacing, which are the specifications of the EJ, the life of the EJ and the possibility of blow-up increased as the joint width increased; however, the EJ life and blow-up increased as the EJ interval reached a certain value. It was found that the possibility of a blow-up occurrence decreased. The results for the PGBA program in extreme weather conditions, the life span of EJs, and the possibility of blow-up in normal climates were reduced by over 50 %. CONCLUSIONS : As a result of PGBA sensitivity analysis, it was found that the substrate type, thermal expansion coefficient, precipitation, and alkali-silica reaction had the greatest influence on pavement expansion and blow-up.
        4,900원
        30.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 지구온난화에 따른 기후변화에 따라 과거와는 다른 양상의 기상 변화가 발생하고 있으며, 해수 온도 상승으로 태풍의 대형화와 강도증가가 발생하고 있다. 이에 따라 선박이 접안 중 갑작스러운 돌풍 발생시 선박의 계류안전성 확보를 위해 사용할 수 있는 돌풍 대비용 직주의 필요성이 증대되고 있다. 본 연구에서는 항만 및 어항 설계기준상 곡주 및 직주 배치 기준을 분석하고 계류안전성 평가 프로그램을 사용하여 12개 시나리오에 따른 직주 사용시 계류안전성 민감도 분석을 수행하였다. 평가 결과, 돌풍 대비용 직주에 선수 및 선미 브레스트라인을 추가하였을 경우, 일반적인 형태의 계류라인 배치에 비해 계류요소값이 감소하는 것으로 분석되었다. 본 연구 결과 는 접안선박 및 항만의 특성을 고려한 돌풍 대비용 직주 배치를 제안하기 위한 기초 자료로 활용될 수 있으며, 부두에서 직주의 배치는 돌풍 발생시 선박운항자 측면에서 선박의 계류안전성을 확보하기 위한 효율적인 방안이 될 것으로 사료된다.
        4,000원
        33.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to understand blow-up distress and causes in concrete pavement. METHODS : Feasible causes of blow-up and existing models were reviewed based on the literature. Three analytical models were adopted to perform a sensitivity analysis. Input parameters reflected the typical concrete pavement of national expressways. Evaluation of blow-up models was based on the amount of temperature increase and zero stress temperature of the concrete pavement. RESULTS : A review of the literature indicated that the five major causes of blow-up were: increase in temperature and solar radiation, alkaliaggregate reaction (AAR), friction characteristics between the concrete slab and subbase, joint closure (incompressible), and joint freezing. The sensitivity analysis revealed that the coefficient of thermal expansion had the greatest influence on the blow-up safety temperature. CONCLUSIONS : From existing blow-up model results, it could be concluded that the construction of concrete pavement during the winter season was not effective at preventing blow-up. In addition, an equivalent coefficient of thermal expansion that considers slab expansion due to AAR was proposed as a model input parameter for concrete pavement sections damaged by AAR.
        4,600원
        38.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 아이소-지오메트릭 해석에서 h-세분화를 이용한 국부 세분화법과 이에 따른 설계 민감도 해석의 방법론을 연 구하였다. 다중 조밀도 방식을 이용하여 경계면에서 변위 적합조건을 만족하였고, 기존의 아이소-지오메트릭 해석의 텐서곱 으로 인해 발생하는 원치 않는 자유도 증가의 문제를 극복하였다. 해석에서의 변위 적합조건과 마찬가지로, 설계 민감도 해석에서도 변위 결과와 마찬가지로 똑같은 적합조건을 만족하도록 하는 방법론을 제시하였다. 수치 예제를 통하여 본 방법론의 효율성을 입증하였고, 특별히 응력 집중 문제에서의 결과와 민감도 값을 비교하며 경계면에서의 적합조건을 확인하였다.
        4,000원
        40.
        2018.05 구독 인증기관·개인회원 무료
        Subsurface cavities in the asphalt pavement which can cause road depression and cave-in accidents influence on the safety of pedestrians and vehicle drivers in the urban area. The existence of subsurface cavity can increase the tensile strain at the bottom of asphalt layer which is an indicator of fatigue cracking potential, and leads to the weakening of the pavement structural capacity. In this study, the finite element (FE) analysis was conducted to examine the relationship between the critical pavement responses and influencing factors, such as cavity depth and size, asphalt layer thickness, and asphalt concrete modulus. The surface deflections and tensile strains calculated from the ABAQUS FE program were compared to those from ILLIPAVE. It is found from this comparison that there are a good relationship between two analysis results. A three dimensional finite element model which is essential to simulate the hexahedral cavity were used to generate the synthetic database of critical pavement responses. To validate the developed model, the deflection data obtained from field Falling Weight Deflectometer (FWD) testing in four different locations were compared to FE deflections. It is found that the center deflections obtained from the FWD testing and FE analysis are similar to each other with an error values of 2.7, 4.4, 5.5, and 11.9 % respectively. The FE model developed in this study seems to be acceptable in simulating actual field cavity condition. On the basis of the data in the database, various analyses were conducted to estimate the effect of influencing factors on the critical pavement responses. It was found that the tensile strain at the bottom of asphalt layer is affected by all the factors but the most affected by the cavity depth and asphalt concrete modulus. Further studies are recommended to properly account for the effect of cavity’s geometry to pavement response.
        1 2 3 4 5