검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        1.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To ensure radiological safety margin in the transport and storage of spent nuclear fuel, it is crucial to perform source term and shielding analyses in advance from the perspective of conservation. When performing source term analysis on UO2 fuel, which is mostly used in commercial nuclear power plants, uranium and oxygen are basically considered to be the initial materials of the new fuel. However, the presence of impurities in the fuel and structural materials of the fuel assembly may influence the source term and shielding analyses. The impurities could be radioactive materials or the stable materials that are activated by irradiation during reactor power operation. As measuring the impurity concentration levels in the fuel and structural materials can be challenging, publicly available information on impurity concentration levels is used as a reference in this evaluation. To assess the effect of impurities, the results of the source term and shielding analyses were compared depending on whether the assumed impurity concentration is considered. For the shielding analysis, generic cask design data developed by KEPCO-E&C was utilized.
        4,300원
        2.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive source terms are important factor in design, licensing and operation of SMR (Small Modular Reactor). In this study, regulatory requirements and evaluation methodology for normal operation on NuScale SMR, which received standard design certification approval on September 11, 2020 from US NRC, are reviewed. The radioactive waste management system of nuclear power reactor should be designed to limit radionuclide concentration in effluents and keep radioactive effluents at restricted area boundary ALARA according to 10 CFR 20 and 10 CFR 50 Appendix I. Also, in general, the coolant source term to calculate the off-site radiological consequences for normal operation of SMR should be determined by using models and parameters that are consistent with regulatory guide 1.112, NUREG- 0017 and the guidance provided in ANSI/ANS-18.1-1999, and the result should be corrected by reflecting the design characteristics of SMR. The coolant source term of NuScale, unlike the case of large NPPs, cannot rely solely on empirical source term data, because the NuScale source term is based on first principle physics, operational experience from recent industry, and lessons learned from large PWR operation. Fission products in reactor coolant are conservatively calculated using first principle physics in SCALE Code assuming 60 GWD/MTU. The release of fission products from fuel to primary coolant based on industry operational experience is determined as fuel failure fraction of 0.0066% for normal operation source term and 0.066% for design basis source term while coolant source term of large NPP is calculated by using ANSI/ANS-18.1 for normal operation and fuel failure fraction of 1% for design basis source term. Water activation products in reactor coolant are calculated from first principles physics and corrosion activation products are calculated by utilizing current large PWR operating data (ANSI/ANS 18.1- 1999) and adjusted to NuScale plant parameters. Also, because ANSI/ANS 18.1-1999 is not based on first principle physics models for CRUD generation, buildup, transport, plate-out, or solubility, NuScale has incorporated lessons learned by using ERPI’s primary water chemistry and steam generator guidelines to ensure source term is conservative and design of materials used cobalt reduction philosophy to help ensure the coolant source term are conservative. Based on the coolant source term calculated according to the above-described method, the annual releases of radioactive materials in gaseous and liquid effluents from NuScale reactor are evaluated. Currently, Small Modular Reactors such as ARA, SMART 100 are under review for licensing in Korea. This study will be helpful to understand how the reactor coolant system source terms are defined and evaluated for SMR.
        3.
        2022.10 구독 인증기관·개인회원 무료
        In Korea, the NUREG-0017 methodology based on realistic model for reactor coolant concentrations are used to estimate the annual radioactive effluent releases for normal operation of nuclear power plant. The realistic model to estimate the radionuclide concentrations in reactor coolant is formulated as a standard, ANSI/ANS-18.1. This standard has provided a set of the reference radionuclide concentrations and adjustment factors for estimating the radioactivity in the principal fluid systems of target plant. Since ANSI/ANS-18.1 was first published in 1976, it was revised in 1984, 1999, 2016, and most recently in 2020. Therefore, this study analyzed revision history of assessment methodology of radioactive source term of light water reactors, which is ANSI/ANS-18.1. Assessment methodology of radioactive source term given ANSI/ANS-18.1 is by using radionuclide concentrations for reactor coolant and steam generator fluid of the reference plant and adjustment factors, which is modifying radioactive source term according to differences in design parameters between reference plant and target plant. There are three type of reference plant: PWR with u-tube steam generator, PWR with once-through steam generator, and BWR. This study analyzed for PWR with u-tube steam generator. Although the standard was revised, evaluation methodology and formula of adjustment factor have been retained, but some of items have been revised. First revision item is reduction of the number of radionuclides and decrease of radioactive concentration in reactor coolant. In the 1976 version of the standard, there were 71 target radionuclides, but the target nuclides have reduced to 57 in 1984 and 56 after 1999. In the case of radioactive concentration in reactor coolant, as the version of standard was updated, the radioactive concentration of 18 nuclides in 1984, 14 nuclides in 1999, and 25 radionuclides in 2016 was decreased. Most of the radionuclides with decrease radioactivity concentration were fission product, it is resulted from improvement of nuclear fuel performance. Second revision item is change of adjustment factors. After the revision in 2016, the adjustment factors for zinc addition plants using natural or depleted zinc are changed. This study analyzed revision history of evaluation methodology of radioactive source term of light water reactors. Furthermore, result of this study will be contributed to the improvement of understanding of assessment methodology and revision history for the radioactive source term.
        4.
        2022.10 구독 인증기관·개인회원 무료
        In order to dispose of spent nuclear fuel (SNF) in deep geological repository, source term evaluation considering its specification, enrichment, burnup, cooling time should be performed. In this study, the measured values of Takahama-3 pressurized water reactor SNF (WH 17×17) samples were analyzed with SCALE 6.1/ORIGEN-S and TRITON code calculation results for validation. Unlike the ORIGENS code, TRITON code calculations differed from two-dimensional neutron flux distribution by using the multi-group cross-section library. Both calculation results from ORIGEN-S and TRITON code showed higher errors in 234U, 239Pu, and 241Pu compared to other actinide nuclides. In the case of axial locations of fuel rods in fuel assembly, fuel rods located at the edge of the fuel assembly presented increased errors due to nuclear reaction cross-section. Overall, the ORIGEN-S predictions informed more accurate agreement with the measured results compared with TRITON results. Especially to 235U, 239Pu, and 240Pu radionuclides, ORIGEN-S errors were denoted more than twice as low as the TRITON results. Comparing the calculation results with experimental results implied that the ORIGENS code was more accurate code than the TRITON code for source term evaluation.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Attention has been paid to the source term released after Chernobyl and Three Mile Island (TMI), which were the representative accidents of nuclear power plants, and has been studied several times in order to predict and evaluate radiation source term, which can be released in the event of a virtual accident. In particular, the impact of the accident was assessed on the basis of Deterministic Safety Analysis (DSA) and after the WASH-1400, the technology of the Probabilistic Safety Assessment (PSA) was introduced, supplementing safety by taking into account the existence of uncertainty. After the Fukushima accident, a SOARCA report was published to evaluate the specific classification of each type of accident, the realistic progress of the accident, and the leakage of radioactive materials. In this paper, the evaluation methodology and results of the source term of severe accident before and after the Fukushima accident were compared, and the evaluation methods applied to domestic nuclear power plants were compared. Prior to the Fukushima accident, the behavior of the accident and source term were evaluated for Loss of Coolant Accident (LOCA), which led to design based accidents, Total Loss of Feed Water (TLOFW) followed by Station Blackout (SBO) the results were compared to Chernobyl and TMI based on the resulting data to evaluate safety and reliability. After the Fukushima accident, the Interfacing System Loss of Coolant Accident (ISLOCA) and the Steam Generator Tube Rupture (SGTR), which is classified as containment’s bypass accident, were included for predictive assessment. This is due to the analysis that the risk of cancer and early mortality are affected. MACST facilities and strategies were added to domestic nuclear power plants, and accidents with a high core damage frequency were mainly interpreted. In addition, source term was evaluated with the addition of a Basement Melt-Through (BMT) accident that had not previously been considered as a focus. As a result of the comparison of source term evaluation, accidents can be caused by a number of unidentified problems, and Korea’s experience on Level 2 and 3 has not been accumulated, making it difficult to predict the results of source term evaluation or lack of reliability.
        16.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        원전 해체는 일반적으로 5단계로 준비, 제염, 절단 및 철거, 폐기물 처리, 환경 복원으로 진행된다. 효율적인 원전 해체를 위해서는 작업자의 안전, 비용 대비 효과, 폐기물 최소화, 재사용 가능성 등이 고려되어야 한다. 또한, 작업자의 안전 및 측정 기술이 확보되어야 원전 해체 작업의 최적 효율을 낼 수 있으며 이를 위해서는 계통 및 기기의 정확한 측정 기술이 필요하다. 원전 해체 시 현장에서 사용할 수 있는 대표적인 In-Situ 방법으로는 CZT, Gamma Camera, ISOCS 등이 있다. 본 연구에서는 대표 시료 채취 없이 원전 해체 시 현장에서 적용될 수 있는 ISOCS를 이용하여 S/G Water Chamber 지점에 대 하여 측정을 수행하였다. 측정 방법은 ISOCS의 HPGe 검출기를 증기 발생기 수실 하부 중앙을 향해 위치하였으며, 이때 검출기는 주변 방사선장 감소를 위해 납 차폐체를 장착하였다. 차폐체 두께는 5 cm인 원통형 납 차폐체를 장착하였으며, 검출 기 전면에는 30도 콜리메이터를 장착하여 측정을 수행하였다. 측정값에 검증을 위해 실제 측정 방법과 동일하게 Microshield를 이용하여 측정한 값과 GEANT4 코드를 이용하여 모델링 하였다. 비교 결과 1.0×101~1.0×102 Bq 정도 차이를 보였으며, 이는 측정 시 주변 방사선의 영향, 모델링의 정밀도 등으로 오차를 줄일 수 있을 것으로 보인다. 본 논문의 연구 결과를 바탕으로 측정값의 정확도 및 신뢰도를 분석하고 향후 해체 작업 시 직접 측정 방법의 적용성에 대한 신뢰도를 높이고자 한다.
        4,000원
        17.
        2015.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Source term analysis should be carried out to prepare the decommissioning of the nuclear power plant. In the planning phase of decommissioning, the classification of decommissioning wastes and the cost evaluation are performed based on the results of source term analysis. In this study, the verification of MCNP/ORIGEN-2 model is carried out for preliminary source term calculation for Wolsung Unit 1. The inventories of actinide nuclides and fission products in fuel bundles with different burn-up were obtained by the depletion calculation of MCNPX code modelling the single channel. Two factors affecting the accuracy of source terms were investigated. First, the neutron spectrum effect on neutron induced activation calculation was reflected in one-group microscopic cross-sections of relevant radio-isotopes using the results of MCNP simulation, and the activation source terms calculated by ORIGEN-2 using the neutron spectrum corrected library were compared with the results of the original ORIGEN-2 library (CANDUNAU.LIB) in ORIGEN-2 code package. Second, operation history effect on activation calculation was also investigated. The source terms on both pressure tubes and calandria tubes replaced in 2010 and calandria tank were evaluated using MCNP/ORIGEN-2 with the neutron spectrum corrected library if the decommissioning wastes can be classified as a low level waste.
        4,600원
        18.
        2014.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        현재 전 세계적으로 설계단계에서 부식 생성물과 방사성 핵종의 양을 예측하는 프로그램에 대해서는 개발되거나 개발중인 프로그램이 다양하다. 그러나 원자력 발전소 해체 시 발생하는 방사화 부식생성물의 양을 평가하는 코드에 대한 개발은 이 루어지지 않고 있어 정확한 산정에 어려움이 있다. 원자로 용기, 원자로 구성품 및 인접 구조물에서의 특성 원소의 중성자 조 사로 인한 방사화재고량을 평가하기 위해서는 원자로의 고정된 구조물을 대표하는 모든 영역에서의 평균 중성자속과 구조 물의 물질조성 및 원자로 운전이력 등을 이용하여 평가해야 한다. 본 논문에서는 설계단계에서 사용되는 1차 계통의 부식생 성물과 방사성 핵종의 양을 예측하는 CORA, PACTOLE, CRUDSIM, CREAT 및 ACE 코드를 분석하였다. 향후 연구에서는 제 염해체 폐기물 발생량 평가에 대한 사용가능성과 개선점을 찾아 부식생성물량 산정에 정확성을 높이고자 한다.
        4,300원
        20.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        사용후핵연료를 파이로 건식처리하면 사용후핵연료 자체 내에 존재하는 세슘, 스트론튬, 초우라늄 계열등이 중간저장 되어 영구처분 방사선원항에서 제외되므로 사용후핵연료집합체를 구성하는 구조재, 즉 금 속폐기물의 방사선원항이 중요해지게 된다. 따라서 본 연구에서는 17×17 KOFA 사용후핵연료 10 톤이 파 이로 건식처리 되었을 경우를 가정하여 각 구조재 부품별로 방사선원항 특성을 분석하였다. 우선 구조재 부품별로 질량 및 부피를 상세히 계산하였다. 핵연료 상단 및 하단 고정체에서의 중성자스펙트럼이 노심과 다르므로 각 구조재 부품별로 핵반응단면적라이브러리를 KENO-VI/ORIGEN-S 모듈로 직접 생산하였으 며, 이를 적용하여 ORIGEN-S 코드로 방사화 방사선원항을 평가하였다. 평가결과 원자로 방출후 10 년 시 점에서의 방사능세기, 붕괴열, 위해지수 값은 각각 1.40×1015 Bequerels, 236 Watts, 4.34×109 m3-water 로 나타났으며, 이는 사용후핵연료 자체 값의 0.7 %, 1.1 %, 0.1 %에 해당하는 값이다. 방사능세기, 붕괴 열, 위해지수 모든 측면에서는 금속폐기물 전체물량의 1 %만을 차지하는 인코넬 718 그리드판이 가장 중 요한 것으로 평가되었으며, 특히 이를 따로 분리하여 관리하면 금속폐기물 전체 방사능세기를 20∼45 % 정도, 위해지수를 30∼45 % 정도 감소시킬 수 있는 것으로 나타났다. 전체적으로 볼 때, 금속폐기물의 방 사능세기 및 위해지수는 처분시스템 설계 시 중요한 인자로 고려되어야 하나, 붕괴열은 그 열량이 작아 중 요하지 않은 것으로 나타났다.
        4,000원
        1 2