검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.11 구독 인증기관·개인회원 무료
        Regulatory agencies require burn-up verification to ensure that dry storage casks using burn-up credit are not loaded with fuel with a reactivity greater than the allowable standard. Accordingly, in preparation for dry storage of SF, the reliability of the burnup was verified and action plans for fuel with confirmed errors were reviewed. Reliability verification was performed by comparing the actual burnup calculated with combustion calculation code (TOTE, ISOTIN) used in NPP and the design burnup calculated with the nuclear design code (ANC). As a result of comparing the differences between actual burnup and design burnup for 7,414 assemblies of SF generated from CE-type NPPs, the average deviation was confirmed to be 0.79% and 220 MWD/MTU. In the CE-type NPPs, no fuel showing large deviations was identified, and it was confirmed that reliability was secured. As a result of comparing the differences in 11,082 assemblies of SF generated from WH-type NPPs, the differences were not large, averaging 1.16% or 422 MWD/MTU. However, fuels showing significant differences were identified, and cause analysis was performed for those fuels. The cause analysis used a method of comparing the burnup of symmetrically loaded fuels in the reactor. For fuels that were not symmetrically loaded, a method was used to compare them with fuels with similar combustion histories. As a result of the review, it was confirmed that the fuel was under- or over-burned compared to symmetrically loaded fuel. For fuels for which clear errors have been identified, we are considering replacing them with the design burnup, and for fuels whose causes cannot be confirmed, we are considering ways to maintain the actual burnup.
        2.
        2023.05 구독 인증기관·개인회원 무료
        As regulations on carbon emissions increase, the interest in renewable energy is also increasing. However, the efficiency of renewable energy generation is highly low and has limitations in replacing existing energy consumption. In terms of this view, nuclear power generation is highlighted because it has the advantage of not emitting carbon. And accordingly, the amount of spent nuclear fuel is going to increase naturally in the future. Therefore, it will be important to obtain the reliability of containers for transporting safely and storing spent nuclear fuel. In this study, a method for verifying the integrity and airtightness of a metal cask for the safe transportation and storage of spent nuclear fuel was studied. Non-destructive testing, thermal stability, leakage stability, and neutron shielding were demonstrated, and as a result, suitable quality for loading spent nuclear fuel could be obtained. Furthermore, it is meaningful in that it has secured manufacturing technology that can be directly applied to industrial field by verifying actual products.
        3.
        2013.03 KCI 등재 서비스 종료(열람 제한)
        저수지 내 퇴적과정으로 의한 저수용량 감소에 대한 효율적 관리의 중요성에도 불구하고, 불확실성을 포함하는 확률론적 관점의 신뢰도 분석이론을 활용한 저수용량 감소에 관한 연구는 많지 않다. 본 연구에서는 신뢰도 분석모형의 하나인 추계학적 감마 과정(stochastic gamma process)을 이용하고 개발된 모형을 소양강댐에서 적용하여 향후 발생될 수 있는 저수용량의 감소를 불확실성 측면에서 분석하였다. 특히 불확실성을 분석하기 위하여 정보적 사전분포(informative prior distribution)를 이용한 Bayesian MCMC 기법을 사용하여 추계학적 감마 과정의 모수(parameter)를 추정하였다. 구축된 정보적 사전분포를 적용한 결과 사전분포의 불확실성에 비해 사후분포의 불확실성이 상당히 감소되어져 정보적 사전분포의 효과를 확인할 수 있었으며, 소양강댐 퇴사용량의 기대 수명은(expected life time)은 5% 유의수준에서 119.3년부터 183.5년의 불확실성을 나타내는 것으로 분석되었다. 이와 같은 연구는 저수용량의 감소에 관한 불확실성 측면의 정보를 신뢰도 분석결과와 함께 제공할 수 있으므로, 향후 퇴적과정으로 인한 저수지의 유지관리계획을 수립함에 있어 댐 관리자 등에게 효과적으로 활용될 수 있을 것으로 판단된다.