검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        1.
        2023.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study used optical and scanning electron microscopy to analyze the surface oxidation phenomenon that accompanies a γ'-precipitate free zone in a directional solidified CM247LC high temperature creep specimen. Surface oxidation occurs on nickel-based superalloy gas turbine blades due to high temperature during use. Among the superalloy components, Al and Cr are greatly affected by diffusion and movement, and Al is a major component of the surface oxidation products. This out-diffusion of Al was accompanied by γ' (Ni3Al) deficiency in the matrix, and formed a γ'-precipitate free zone at the boundary of the surface oxide layer. Among the components of CM247LC, Cr and Al related to surface oxidation consist of 8 % and 5.6 %, respectively. When Al, the main component of the γ' precipitation phase, diffused out to the surface, a high content of Cr was observed in these PFZs. This is because the PFZ is made of a high Cr γ phase. Surface oxidation of DS CM247LC was observed in high temperature creep specimens, and γ'-rafting occurred due to stress applied to the creep specimens. However, the stress states applied to the grip and gauge length of the creep specimen were different, and accordingly, different γ'-rafting patterns were observed. Such surface oxidation and PFZ and γ'-rafting are shown to affect CM247LC creep lifetime. Mapping the microstructure and composition of major components such as Al and Cr and their role in surface oxidation, revealed in this study, will be utilized in the development of alloys to improve creep life.
        4,000원
        2.
        2023.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-temperature oxidation of a Ni-based superalloy was analyzed with samples taken from gas turbine blades, where the samples were heat-treated and thermally exposed. The effect of Cr/Ti/Al elements in the alloy on high temperature oxidation was investigated using an optical microscope, SEM/EDS, and TEM. A high-Cr/high-Ti oxide layer was formed on the blade surface under the heat-treated state considered to be the initial stage of high-temperature oxidation. In addition, a PFZ (γ’ precipitate free zone) accompanied by Cr carbide of Cr23C6 and high Cr-Co phase as a kind of TCP precipitation was formed under the surface layer. Pits of several μm depth containing high-Al content oxide was observed at the boundary between the oxide layer and PFZ. However, high temperature oxidation formed on the thermally exposed blade surface consisted of the following steps: ① Ti-oxide formation in the center of the oxide layer, ② Cr-oxide formation surrounding the inner oxide layer, and ③ Al-oxide formation in the pits directly under the Cr oxide layer. It is estimated that the Cr content of Ni-based superalloys improves the oxidation resistance of the alloy by forming dense oxide layer, but produced the σ or μ phase of TCP precipitation with the high-Cr component resulting in material brittleness.
        4,000원
        3.
        2021.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of solidification rate on micro-segregation in investment casting of IN738LC superalloy was studied. In Ni-based superalloys, the micro-segregation of solute atoms is formed due to limited diffusion during cast and solidification. The microstructure of cast Ni-based superalloys is largely divided into dendrite core of initial solidification and interdendrite of final solidification. In particular, mosaic shaped eutectic γ/γ’ and carbides are formed in the interdendrite of the final solidification region in some cases. The micro-segregation phenomena formed in regions of dendrite core and interdendrite including eutectic γ/γ’ and carbides were analyzed using OM, SEM/EDS and micro Vickers hardness. As a result of analysis, the lack of (Cr, W) and the accumulation of Ti were measured in the eutectic γ/γ’, and the accumulation of (Cr, Mo) and the lack of Ti were measured in the interdendrite between dendrite and eutectic. Carbides formed in interdendritic region were composed of (Ti, W, Mo, C). The segregation applied to each microstructure is mainly due to the formation of γ’ with Ni3(Al,Ti) composition. The Ni accumulation accompanied by Cr depletion, and the Ti accumulated in the eutectic region as a γ’ forming elements. The Mo tends to diffuse out from the dendrite core to the interdendrite, and the W diffuse out from the interdendrite to the dendrite core. Therefore, the accumulation of Mo in the interdendrite and the deficiency of W occur in the eutectic region located in the interdendrite. Heat treatment makes the degree of the micro-segregation decrease due to the diffusion during solid solution. This study could be applied to the heat treatment technology for the micro-segregation control in cast Ni-based superalloys.
        4,200원
        4.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural characteristics of directionally solidified René 80 superalloy are investigated with optical microscope and scanning electron microscope; solidification velocity is found to change from 25 to 200 μm/s under the condition of constant thermal gradient (G) and constant alloy composition (Co). Based on differential scanning calorimetry (DSC) measurement, γ phase (1,322 oC), MC carbide (1,278 oC), γ/γ' eutectic phase (1,202 oC), and γ' precipitate (1,136 oC) are formed sequentially during cooling process. The size of the MC carbide and γ/γ' eutectic phases gradually decrease with increasing solidification velocity, whereas the area fractions of MC carbide and γ/γ' eutectic phase are nearly constant as a function of solidification velocity. It is estimated that the area fractions of MC carbide and γ/γ' eutectic phase are determined not by the solidification velocity but by the alloy composition. Microstructural characteristics of René 80 superalloy after solid solution heat-treatment and primary aging heat-treatment are such that the size and the area fraction of γ' precipitate are nearly constant with solidification velocity and the area fraction of γ/γ' eutectic phase decreases from 1.7 % to 0.955 %, which is also constant regardless of the solidification velocity. However, the size of carbide solely decreases with increasing solidification velocity, which influences the tensile properties at room temperature.
        4,000원
        5.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, solid solution heat treatment of consolidated nickel-based superalloy powders is carried out by hot isotactic pressing. The effects of the cooling rate of salt quenching, and air cooling on the microstructures and the mechanical properties of the specimens are analyzed . The specimen that is air cooled shows the formation of serrated grain boundaries due to their obstruction by the carbide particles. Moreover, the specimen that is salt quenched shows higher strength than the one that is air cooled due to the presence of fine and close-packed tertiary gamma prime phase. The tensile elongation at high temperatures improves due to the presence of grain boundary serrations in the specimen that is air cooled. On the contrary, the specimen that is salt quenched and consists of unserrated grain boundaries shows better creep properties than the air cooled specimen with the serrated grain boundaries, due to the negative creep phenomenon.
        4,000원
        6.
        2015.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The fatigue strength of a nickel-base superalloy was studied. Stress-controlled fatigue tests were carried out at 700 oC and 5 Hz using triangular wave forms. In this study, two kinds of testing procedures were adopted. One is the conventional tension-zero fatigue test(R = 0). The other was a procedure in which the maximum stress was held at 1000 MPa and the minimum stress was diverse from zero to 1000 MPa at 24 and 700 oC. The results of the fatigue tests at 700 oC indicate that the fracture mechanism changed according to both the mean stress and the stress range. At a higher stress range, γ ' precipitates are sheared by a/2<110> dislocation pairs coupled by APB. Therefore, in a large stress range, the deformation occurred by shearing of γ ' by a/2<110> dislocations, which brought about crystallographic shear fracture. As the stress range was decreased, the fracture mode gradually changed from crystallographic shear fracture to gradual growth of fatigue cracks. At an intermediate stress range, as it became more difficult for a/2<110> dislocation pairs to shear γ ' particles, cracks started to propagate in the matrix, avoiding the harder γ ' particles. High mean stress induced creep deformation, that is, γ ' particles were sheared by {111}<112> slip systems, which led to the formation of stacking faults in the precipitates. Thus, the change in fracture mechanism brought about the inversion of the S-N curves.
        4,000원
        7.
        2015.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The γ/γ´ two-phases, commonly known as a eutectic structure, are observed in the γ interdendritic region of a Nibase superalloy. However, the growth behavior of the γ/γ´ two-phases, whether it is of eutectic or peritectic nature, has not been decidedly established. Directional solidifications were, thus, performed with the planar interface at a low growth rate of 0.5 μm/s in order to promote macro segregation. Directional solidification started with the γ planar interface and the γ´ phase nucleated on the γ planar interface at the solidification fraction of 0.75. The γ/γ´ two-phases showed the γ´ rod structure as major phase and the γ minor phase between γ´ rods, and the volume fraction of the γ phase changed continuously with an increasing solidification fraction. The two-phase γ/γ´ is seen as the coupled peritectic.
        4,000원
        8.
        2015.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fe-base superalloy powders with Y2O3 dispersion were prepared by high energy ball milling, followed by sparkplasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50mm were usedfor the preparation of Fe-20Cr-4.5Al-0.5Ti-O.5Y2O3 powder mixtures (wt%). The milling process of the powders was carriedout in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation(350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) wereapplied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclicoperation and was about 15nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constantmilling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at 1100oC for 30 min invacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, ahomogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.
        4,000원
        9.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nickel-based superalloy IN 713C powders have been consolidated by hot isostatic pressing (HIPing). The microstructure and mechanical properties of the superalloys were investigated at the HIPing temperature ranging from 1030o C to 1230o C. When the IN 713C powder was heated above γ' solvus temperature (about 1180o C), the microstruc- ture was composed of the austenitic FCC matrix phase γ plus a variety of secondary phases, such as γ' precipitates in γ matrix and MC carbides at grain boundaries. The yield and tensile strengths of HIPed specimens at room temperature were decreased while the elongation and reduction of area were increased as the processing temperature increased. At 700o C, the strength was similar regardless of HIPing temperature; however, the ductility was drastically increased with increasing the temperature. It is considered that these properties compared to those of cast products are originated from the homogeneity of microstructure obtained from a PM process.
        4,000원
        10.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An attempt was made to evaluate creep reliability of two commercial Ni-based superalloys by using ultrasonic wave. The materials include fine-grained PM alloy fabricated by mechanical alloying and subsequent hot isostatic pressing, and IN738LC cast alloy with a grain size of a few cm. Microstructural parameters (fraction of creep cavity and size of precipitates) and ultrasonic parameters (velocity, attenuation) were measured to try to find relationships between them. Ultrasonic velocity decreased with creep cavity formation in PM alloy. On the other hand, no distinct changing trend of ultrasonic velocity was observed for IN738LC alloy. Ultrasonic attenuation was found to have a linear correlation with the size of precipitates and was suggested as a potential parameter for monitoring creep reliability of IN738LC alloy.
        4,000원
        11.
        2011.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study was carried out to evaluate the microstructures and mechanical properties of a friction stir welded Ni based alloy. Inconel 600 (single phase type) alloy was selected as an experimental material. For this material, friction stir welding (FSW) was performed at a constant tool rotation speed of 400 rpm and a welding speed of 150~200 mm/min by a FSW machine, and argon shielding gas was utilized to prevent surface oxidation of the weld material. At all conditions, sound friction stir welds without any weld defects were obtained. The electron back-scattered diffraction (EBSD) method was used to analyze the grain boundary character distributions (GBCDs) of the welds. As a result, dynamic recrystallization was observed at all conditions. In addition, grain refinement was achieved in the stir zone, gradually accelerating from 19 μm in average grain size of the base material to 5.5 μm (150 mm/min) and 4.1 μm (200 mm/min) in the stir zone with increasing welding speed. Grain refinement also led to enhancement of the mechanical properties: the 200 mm/min friction stir welded zone showed 25% higher microhardness and 15% higher tensile strength relative to the base material.
        4,000원
        12.
        2008.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Directional solidification experiments were carried out at 1-300 μm/sec solidification rates in the single crystal superalloy, CMSX 10. The solid/liquid interface morphology changed from planar to dendritic, and the dendrite spacing became finer as the solidification rate increased. The pool size of the γ/γ' eutectic, formed between dendrites, reduced as the solidification rate increased. The phase formation temperatures, such as the solidus, liquidus and eutectic, were estimated by differential scanning calorimetry (DSC) analysis. The morphology of the γ/γ' phase, known to be eutectic, showed γ' cells with a γ intercellular network, and this γ/γ' was composed of coarse and fine γ/γ' regions. In this study, it is suggested that the γ/γ' phase was a coupled peritectic.The solidification procedure of the γ/γ' between dendrites is also discussed.
        4,000원
        14.
        2006.04 구독 인증기관·개인회원 무료
        Laser additive direct deposition of metals is a new rapid manufacturing technology, which combines with computer aided design, laser cladding and rapid prototyping. The advanced technology can build fully-dense metal components directly from CAD files with neither mould nor tool. Based on the theory of this technology, a promising rapid manufacturing system called "Laser Metal Deposition Shaping (LMDS)" is being developed significantly. The microstructure and mechanical properties of the LMDS-formed samples are tested and analyzed synthetically. As a result, significant processing flexibility with the LMDS system over conventional processing capabilities is recognized, with potentially lower production cost, higher quality components, and shorter lead time.
        19.
        2001.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        일방향응고법으로 IN792+Hf 초내열합금의 응고속도에 따른 응고거동의 변화에 대해 연구하였다. 조직관찰을 통해 각 상의 응고과정과 석출거동을 분석하였다 일방향응고시 응고속도가 감소하면 문자형의 탄화물은 면상 탄화물로 변화하였고 γ상과 탄화물의 결합은 탄화물의 수지상 성장에 의한 것임을 확인할 수 있었다. 긴 막대형상의 탄화물이 0.5μm/s의 응고속도에서 입계를 따라 형성되었으며 잔류액상지역에서 γ'형성원소가 풍부한 구역과 고갈된 구역이 발견되었다. 공정 γ/γ'은 형성원소가 풍부한 구역에서 핵생성하였으며 공정 γ/γ'의 형성은 잔류액상지역의 (Ti+Hf+Ta+W)/Al 비율을 높여 η상의 석출을 유발하였다. 느린 응고속도에서는 잔류액상지역으로부터의 충분한 역확산으로 (Ti+Hf+Ta+W)/Al 비율이 낮아져 η상의 석출이 억제되었다.
        4,000원
        20.
        2000.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        가스터빈 블레이드 재료로 사용되는 IN738LC 니켈기 초합금 주조재에 대하여 고온등압압축(HIP) 공정에 의한 미세조직 변화와 고온 피로수명에 미치는 영향을 조사하였다. 세부적으로 HIP 처리에 따른 주조결함 제거와 피로변형 열화재의 물성재생효과 확인에 중점을 두었으며, 이를 위하여 회전굽힘 피로시험을 실시하고 변형전후의 미세조직을 광학 및 주사전자현미경으로 관찰하였다. HIP 처리 전후의 미세조직과 피로수명을 비교, 평가한 결과, 주조재와 열처리재의 피로수명 차는 크지 않았으나 HIP 처리재의 피로수명은 이들과 비교하여 평균 60배 이상 증가한 것으로 나타났다. 또한 인위적으로 고온 피로변형을 가한 열화재를 대상으로 반복 HIP 처리한 결과, 열화 변형조직이 신재 상태로 거의 완전히 재생될 뿐만 아니라, 재료내에 미세하게 잔존하던 주조결함까지 부가적으로 제거됨에 따라 반복 HIP 처리에 의한 피로수명 연장 효과가 크게 나타났다.
        4,000원
        1 2