검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type Bi2Te2.7Se0.3 material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at 360°C. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.
        4,000원
        2.
        2006.04 구독 인증기관·개인회원 무료
        In the present study, the powder metallurgical fabrication of thermoelectric materials has been studied with specific interest to control the microstructure by the mechanical grinding process. The thermoelectric powders with a various particle size distribution were prepared by the combination of the mechanical milling and blending processes. The specific electric resistivity of the sintered bodies mainly depended on the orientation of the crystal structure rather than the particle size of the raw powders.
        4.
        2006.04 구독 인증기관·개인회원 무료
        New PM route via bulk mechanical alloying is developed to fabricate the solid solution semi-conductive materials with and for 0 < x, y < 1 and to investigate their thermoelectric materials. Since is n-type and both and are p-type, pn-transition takes place at the specified range of germanium content, x, and tin content, y. Through optimization of chemical composition, solid-solution type thermoelectric semi-conductive materials are designed both for n-and p-type materials.
        6.
        2002.06 구독 인증기관·개인회원 무료
        Bi-Te게 열전재료는 200~400K 정도의 저온에서 에너지 변환 효율이 가장 높은 재료로써 열전냉각, 발전재료 등에 응용하기 위하여 제조방법 및 특성에 관한 많은 역구가 진행되어 왔다. 현재 산업화에 응용되고 있는 일방향응고법은 기계적 강도가 약하여 회수 율이 낮으며, 결정을 성장시키는데 비교적 장시간을 필요로 하기 때문에 제조 단가가 비싸다. 따라서 이와 같은 문제점을 보완하기 위하여 합금설계 및 가공공정에 대한 연구가 활발히 진행되고 있다. 이에
        7.
        2016.08 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        For the distribution of fresh produce, the thermoelectric cooling system combined with thermo electric materials (TEM) and phase change material (PCM) was studied. The PCM used this study was produced by in-situ polymerization technology which referred microencapsulation of hydrocarbon (n-tetradecane and n-hexadecane). In this study, quality characteristics of bell peppers in thermoelectric cooling system combined with TEM and PCM were analyzed and control was placed in an EPS (expanded polystyrene) box. As a result of quality characteristics analysis, weight of bell peppers decreased and moisture content of bell peppers was 90.96~94.43% during storage. Vitamin C content of bell pepper decreased during storage and reduction ratio of control was higher than that of BPT-5 treatment(bell pepper in thermoelectric cooling system with PCM which is kept the temperature at 5℃). The result of color value, on 21 day, ΔE value of BPT-5 treatment was 5.05 while that of control was 41.8. On 21 day, total bacteria count of BPT-5 treated bell pepper shown less than that of control. In conclusion, it suggested that the thermoelectric cooling system combined with PCM improved quality of fresh produce during transportation and storage.