검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 34

        21.
        2010.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The composite photocatalysts of a Fe-modified carbon nanotube (CNT)-TiO2 were synthesized by a two-step sol-gel method at high temperature. Its chemical composition and surface properties were investigated by BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that the BET surface area was improved by modification of Fe, which was related to the adsorption capacity for each composite. Interesting thin layer aggregates of nanosized TiO2 were observed from TEM images, probably stabilized by the presence of CNT, and the surface and structural characterization of the samples was carried out. The XRD results showed that the Fe/CNT-TiO2 composites contained a mix of anatase and rutile forms of TiO2 particles when the precursor is TiOSO4·xH2O (TOS). An excellent photocatalytic activity of Fe/CNT-TiO2 was obtained for the degradation of methylene blue (MB) under visible light irradiation. It was considered that Fe cation could be doped into the matrix of TiO2, which could hinder the recombination rate of the excited electrons/holes. The photocatalytic activity of the composites was also found to depend on the presence of CNT. The synergistic effects among the Fe, CNT and TiO2 components were responsible for improving the visible light photocatalytic activity.
        4,000원
        22.
        2009.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Expanded graphite (EG) is synthesized by chemical intercalation of natural graphite (NG) and rapid expansion at high temperature, with titanium n-butoxide (TNB) used as titanium source by a sol-gel method to prepare EG-TiO2 composite. The performances of the prepared EG-TiO2 composite are characterized by BET surface area measurement, scanning electron microscopy (SEM), X-ray diffraction patterns (XRD) and energy dispersive X-ray analysis (EDX). To compare the photocatalytic activities of the EG-TiO2 composite, three kinds of dye solutions, methylene blue (MB), methylene orange (MO) and rhodamine B (RhB), and two kinds of light source, UV light and visible light (VL), are used. Comparing the results, it can be clearly seen that the degradation of all of the dye solutions under irradiation by UV light is much better than that under irradiation by visible light, and the decomposition of MB solution was better than that of both of MO and RhB solution.
        4,000원
        23.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A visible-light photoactive photocatalyst was synthesized successfully by means of cogrinding of anatase- in ambient, followed by heat-treatment at in air environment. In general, it is well known that the grinding-operation induces phase transformation of a- to rutile . This study investigates the influence of the amount of gas on the phase transformation rate of a- and enhancement of visible-light photocatalytic activity, and also examines the relation between the photocatalytic activity and the period of grinding time. The phase transformation rate of a- to rutile is retarded with the amount of NH3 injected. And the visible-light photocatalytic activity of samples, was more closely related to the period of grinding time than amount injected, which means that the doping amount of nitrogen into more effective to mechanical energy than amount injected. XRD, XPS, FT-IR, UV-vis, Specific surface area (SSA), NOx decomposition techniques are employed to verify above results more clearly.
        4,000원
        24.
        2008.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        the less-reported gaseous studies have primarily dealt with chemical process stream concentrations than indoor air quality (IAQ) concentration levels. Accordingly, the current study was conducted to establish the feasibility of applying visible-light-induced TiO2 doped with sulfur (S) element to cleanse toluene and ehtyl benzene at IAQ levels. The S-doped TiO2 was prepared by applying two popular processes and two well-known methods. For both target compounds, the two coating methods exhibited different photocatalytic oxidation (PCO) efficiency. Similarly, the two S-doping processes showed different PCO efficiency. These results indicate that the coating method and doping process are important parameters which can influence PCO efficiency. Meanwhile, it was found that the PCO efficiency of ethyl benzene was higher than that of toluene. In addition, the degradation efficiency of the target compounds increased as the relative humidity (RH) decreased. The PCO efficiency varied from 44% to 74% for toluene and from 68% to 95%, as the RH decreased. Consequently, it is suggested that with appropriate RH conditions, the visible-light-assisted photocatalytic systems can also become an important tool for improving IAQ.
        4,200원
        26.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The field of photocatalysis is one of the fastest growing areas both in research and commercial fields. Titanium dioxide is the most investigated semi-conductor material for the photocatalysis applications. Research to achieve TiO2 visible light activation has drawn enormous attentions because of its potential to use solar light. This paper reviews the attempts made to extend its visible photocatalytic activity by carbon doping. Various approaches adopted to incorporate carbon to TiO2 are summarized highlighting the major developments in this active research field. Theoretical features on carbon doping are also presented. Future scenario in the rapidly developing and exciting area is outlined for practical applications with solar light.
        4,200원
        27.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It prepared the TiO2 powder which has photo-catalytic activity in the visible-light by the wet process with titanium oxysulfate. The titanium dioxide(TiO2) by the wet process creates a new absorption band in the visible light region, and is expected to create photocatalytic activity in this region. Anatase TiO2 powder which has photocatalytic activity in the visible light region, is treated using microwave and radio-frequency(RF) plasma. But, the TiO2 powder for the visible light region, which also can be easily produced by wet process. The wet process TiO2 absorbed visible light between 400nm and 600nm, and showed a high activity in this region, as measured by the oxidation removal of aceton from the gas phase. The AH-380 sample appears the yellow color to be strong, the catalytic activity in the visible ray was excellent in comparison with the plasma-treated TiO2. The AH-380 TiO2 powder, which can be easily produced on a large scale, is expected to have higher efficiency in utilizing solar energy than the plasma-treated TiO2 powder.
        4,000원
        30.
        2019.11 KCI 등재 서비스 종료(열람 제한)
        This study evaluated the photocatalytic oxidation efficiency of volatile organic compounds by Cu2O -TiO2 under visible-light irradiation. Cu2O-TiO2 was synthesized by an ultrasonic-assisted method. The XRD result indicated successful p-n type photocatalysts. However, no diffraction peaks belonging to TiO2 were observed for the Cu2O-TiO2. The Uv-vis spectra result revealed that the synthesized Cu2O-TiO2 can be activated under visible-light irradiation. The FE-TEM/EDS result showed the formation of synthesized nanocomposites in the commercial P25 TiO2, the undoped TiO2, and Cu2O-TiO2 and componential analysis in the undoped TiO2 and Cu2O-TiO2. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with Cu2O-TiO2 were higher than those of P25 TiO2 and undoped TiO2. These results indicate that the prepared Cu2O-TiO2 photocatalyst can be applied effectively to control gaseous BTEX.
        31.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        In this study, we evaluated the photocatalytic oxidation efficiency of aromatic volatile hydrocarbons by using WO3–doped TiO2 nanotubes (WTNTs) under visible-light irradiation. One-dimensional WTNTs were synthesized by ultrasonic-assisted hydrothermal method and impregnation. XRD analysis revealed successful incorporation of WO3 into TiO2 nanotube (TNT) structures. UV-Vis spectra exhibited that the synthesized WTNT samples can be activated under visible light irradiation. FE-SEM and TEM images showed the one-dimensional structure of the prepared TNTs and WTNTs. The photocatalytic oxidation efficiencies of toluene, ethylbenzene, and o-xylene were higher using WTNT samples than undoped TNT. These results were explained based on the charge separation ability, adsorption capability, and light absorption of the sample photocatalysts. Among the different light sources, light-emitting-diodes (LEDs) are more highly energy-efficient than 8-W daylight used for the photocatalytic oxidation of toluene, ethylbenzene, and o-xylene, though the photocatalytic oxidation efficiency is higher for 8-W daylight.
        32.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        In this paper, we propose a new method for improving the accuracy of localizing a robot to find the position of a robot in indoor environment. The proposed method uses visible light for indoor localization with a reference receiver to estimate optical power of individual LED in order to reduce localization errors which are caused by aging of LED components and different optical power for each individual LED, etc. We evaluate the performance of the proposed method by comparing it with the performance of traditional model. In several simulations, probability density functions and cumulative distribution functions of localization errors are also obtained. Results indicate that the proposed method is able to reduce localization errors from 7.3 cm to 1.6 cm with a precision of 95%.
        33.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        Graphene oxide (GO)-titania composites have emerged as an attractive heterogeneous photocatalyst that can enhance the photocatalytic activity of TiO2 nanoparticles owing to their potential interaction of electronic and adsorption natures. Accordingly, TiO2-GO mixtures were synthesized in this study using a simple chemical mixing process, and their heterogeneous photocatalytic activities were investigated to determine the degradation of airborne organic pollutants (benzene, ethyl benzene, and o-xylene (BEX)) under different operational conditions. The Fourier transform infrared spectroscopy results demonstrated the presence of GO for the TiO2-GO composites. The average efficiencies of the TiO2-GO mixtures for the decomposition of each component of BEX determined during the 3-h photocatalytic processes were 26%, 92%, and 96%, respectively, whereas the average efficiencies of the unmodified TiO2 powder were 3%, 8%, and 10%, respectively. Furthermore, the degradation efficiency of the unmodified TiO2 powder for all target compounds decreased during the 3-h photocatalytic processes, suggesting a potential deactivation even during such a short time period. Two operational conditions (air flow entering into the air-cleaning devices and the indoor pollution levels) were found to be important factors for the photocatalytic decomposition of BEX molecules. Taken together, these results show that a TiO2-GO mixture can be applied effectively for the purification of airborne organic pollutants when the operating conditions are optimized.
        34.
        2008.11 KCI 등재 서비스 종료(열람 제한)
        Enhancing with non-metallic elemental nitrogen(N) is one of several methods that have been proposed to modify the electronic properties of bulk titanium dioxide(TiO2), in order to make TiO2 effective under visible-light irradiation. Accordingly, current study evaluated the feasibility of applying visible-light-induced TiO2 enhanced with N element to cleanse aromatic compounds, focusing on xylene isomers at indoor air quality(IAQ) levels. The N-enhanced TiO2 was prepared by applying two popular processes, and they were coated by applying two well-known methods. For three o-, m-, and p-xylene, the two coating methods exhibited different photocatalytic oxidation(PCO) efficiencies. Similarly, the two N-doping processes showed different PCO efficiencies. For all three stream flow rates(SFRs), the degradation efficiencies were similar between o-xylene and m,p-xylene. The degradation efficiencies of all target compounds increased as the SFR decreased. The degradation efficiencies determined via a PCO system with N-enhanced visible-light induced TiO2 was somewhat lower than that with ultraviolet(UV)-light induced unmodified TiO2, which was reported by previous studies. Nevertheless, it is noteworthy that PCO efficiencies increased up to 94% for o-xylene and 97% for the m,p-xylene under lower SFR(0.5 L min-1). Consequently, it is suggested that with appropriate SFR conditions, the visible-light-assisted photocatalytic systems could also become important tools for improving IAQ.
        1 2