검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 98

        61.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        In this study, the low-temperature vacuum swing adsorption (low temp. VSA) process was applied to the activated carbon adsorption tower for treatment of volatile organic compounds (VOCs) to extend the replacement period of the adsorbent and to solve the difficulties of operation management. A practical application study was performed based on continuous operation in the field. The VSA process removes the adsorbate by reducing the pressure at a relatively low temperature (90℃ or less) to compensate for the disadvantages of the conventional thermal swing adsorption (TSA) process. A pilot scale VSA process with a size of 30 m and 2 min−1 was applied to the small scale painting plant, which is the main source of VOCs, and subject to 100 adsorption/desorption cycles. After the sampling of activated carbon every 20 cycles, the specific surface area and derivative thermogravimetric analysis (DTA) analysis were investigated to analyze the change of activated carbon characteristics with increasing cycles. During 100 continuous cycles, toluene gas was arbitrarily supplied to the pilot VSA process to compare toluene adsorption capacity with respect to raw activated carbon. More than 99% of the VOCs emitted from the paint plant were adsorbed and removed during the operation of the VSA process. The increase in cycle did not affect the specific surface area and micropores of activated carbon. However, the physical adsorption amount of the non-desorbed adsorbate remaining in the micropores tends to increase; therefore, it is considered that the effective adsorption amount decreases as the number of regeneration increases. As a result of the toluene adsorption test of the pilot plant after 100 consecutive cycles, 91% removal efficiency relative to the raw activated carbon was maintained. Thus, stable application of low-temperature VSA equipment is feasible in field application.
        62.
        2018.05 서비스 종료(열람 제한)
        휘발성 유기화합물(VOCs)은 유기용매를 주로 사용하는 산업공정에서 배출되는 일반적인 대기오염물질 중 하나로 그 물질 자체가 독성 및 발암성을 지니기도 하고 오존 생성의 전구체로 작용하기도 하여 인체 건강과 환경에 부정적인 영향을 주고 있다. 또한 최근 초미세먼지 2차생성에 기여하고 있음이 알려짐에 따라 VOCs 저감에 대한 국제적인 관심은 더욱 높아지고 있는 실정이다. 중소규모 사업장에서는 VOCs 처리를 위해 주로 활성탄 흡착탑을 이용하고 있으며 활성탄의 짧은 파과점으로 일정기간 사용 후 교체가 필요하지만, 교체 비용 부담에 따른 적절한 유지관리가 미흡하여 VOCs가 직접 대기로 방출되는 문제가 발생되고 있다. 따라서 본 연구에서는 활성탄 파과 후 현장에서 재생이 가능한 흡탈착 공정에 대하여 연구를 수행하였다. 기존 재생 공정인 열탈착(TSA) 공정은 에너지 비용이 많이 소요되며 수분 또는 고온 가스를 사용해야하므로 재생 시간이 길고 부대시설이 필요한 단점이 있어 현장에서 흡착 후 직접 재생하기에는 다소 무리가 따른다. 저온 감압탈착(VSA) 공정은 상대적으로 저온(80∼90℃)에서 진공펌프를 이용하여 탈착하는 방식으로 감압시에 VOCs가 휘발하는 온도가 낮아지므로 상대적으로 낮은 온도에서 탈착이 가능하다. 이에 따라 현장에서 자체재생 가능한 탈착 방법으로 저온 VSA 기술을 적용하였으며, 30 CMM급 흡탈착 시스템을 제작하여 실제 도장 공장의 배출가스에 대한 현장 적용성 연구를 수행하였다. 또한 저온 VSA 공정을 통해 배출되는 탈착가스는 재생시 캐리어가스 유량이 상대적으로 적어 고농도로 배출되므로 회수하여 유기용매로 재활용할 경우 원료 절감에 따른 경제적 효과가 매우 크다. 따라서 VOCs를 회수하기 위한 방법으로 기액 접촉 효율이 높은 용매 직접접촉식 응축 방식을 적용하였으며, 30 LPM 직접접촉식 회수장치를 제작하고 실 탈착가스를 이용한 회수실험을 수행함으로써 본 기술에 대한 현장 적용 가능성에 대하여 평가해보고자 하였다.
        63.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        This study is to identify the effects of DRE (destruction and removal efficiency) and carbonization of Xylene when using the electron beam energy. The irradiation intensity of electron beam energy was 10 mA, 20 mA and irradiation time was 5.7, 11.4, 22.8, 45.6 sec (Absorbed dose are 41.41, 82.82, 165.64, 331.28, 662.55 kGy). The Xylene was completely removed at 331.28 kGy. Main by-products was carbon particles. Carbon particle formation was increased with irradiation intensity increasing. Most of the by-products of particle were Carbon black and Graphite.
        64.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        In order to prepare the information needed to construct a reduction system for volatile organic compounds (VOCs) exhausted from ship-block paint-booths in a giant shipyard, VOCs in paint-shop airs were analyzed and compared to the components in paint thinners. Aromatic hydrocarbons containing eight and nine carbon atoms are known to be major VOC compounds found in shipyard paint-shops. The total hydrocarbon (THC(C7)) concentrations calibrated using toluene gas, were measured in block paint-shops with two photo-ionization detector (PID) meters, and the resulting THC(C7) data were converted to THC(C1) concentrations according to the Standard Methods for the Measurements of Air Pollution in South Korea. THC(C1) concentrations near the spray site ranged from 10 to 2,000 ppm, but they were less than 400 ppm near the walls of the paint-booth. The measurements of THC concentrations, based on the height of the monitoring sites, were related to the height of the target to which the spray paints were applied. The maximum concentrations occurred at almost the same height as the spray targets. When painted blocks had been dried-by warming with no spraying, the THC concentrations were 80~100 ppm.
        65.
        2015.10 KCI 등재 서비스 종료(열람 제한)
        In present study, the temporal characteristics of nine selected volatile organic compounds (VOCs), including four alcohol, 2 aldehyde, and 3 ketone compounds, in high-stories urban apartments over a 2-y period were investigated. The indoor VOC concentrations had generally a decreasing trend over the 2-y follow-up period. For examples, the 2E1H indoor concentration decreased from 10.8 ㎍/m3 for the first two months to 5.1 ㎍/m3 for the last two months. In addition, the DCA and ACT indoor concentrations decreased from 5.0 and 14 ㎍/m3 for the first two months to 2.2 and 6.4 ㎍/m3, respectively, for the last two months. The indoor-to outdoor concentration ratios over the 2-y period were much greater than 1, indicating that indoor VOC concentrations were higher than the outdoor VOC concentrations. Similar to those of the individual VOCs, the indoorto- outdoor concentration ratios of all three VOC groups were higher than 1 over the 2-y follow-up period, suggesting higher indoor concentrations of the three VOC groups than outdoor concentrations. In consistence with the results of VOC indoor concentrations, the VOC emission rates decreased gradually as time passed, due to the decreased VOC emission strengths of indoor sources. Finally, there was an initial sharp decrease in the indoor VOC concentrations followed by a slower decrease, indicating a multi-exponential decay model for the target VOCs, which was demonstrated by comparison of the residuals and the adjusted coefficient of determination associated with the one and two-exponential fits of each data set.
        66.
        2015.10 KCI 등재 서비스 종료(열람 제한)
        Volatile Organic Compounds in Urban Atmosphere are contributing largely at significant risks to human health andhave caused serious problems such as ozone formation. This study is to identify the effects of DRE (destruction andremoval efficiency) and carbonization of styrene when using the electron beam energy. The irradiation intensity of electronbeam energy was 1mA, 5mA and irradiation time were 5sec and 10sec. The styrene was completely destroyed at 5mA.Main by-products was aerosol particles. Aerosol particle formation was increased with increasing irradiation intensity.Most of the by-products of particle were carbon.
        67.
        2015.02 서비스 종료(열람 제한)
        서울과 대구 및 울산, 구미, 여수 산업단지 내 지하수의 휘발성 유기화합물(VOCs) 오염 특성을 살펴보았다. 모든 지역에서 염소계 유기용매와 트리할로메탄이 가장 빈번하게 검출되는 휘발성 유기화합물이였다. MTBE는 도시 지역에서만 빈번하게 검출되었으며, 사염화탄소와 클로로포름은 산업단지에서 빈번하게 높은 농도로 검출되었다. 서울 지하수를 대상으로 휘발성 유기화합물로 인한 지하수 오염 실태를 좀 더 정밀하게 조사하였다. 그 결과, 염소계 유기용매 및 염소계 유기용매의 탈염소화 과정에서 생성되는 중간물질로 인한 오염이 심각한 것을 알 수 있었다. 검출빈도, 농도규모, 상관관계 분석을 통해 cis-1,2-DCE는 TCE의 분해 과정에서 생성되었으며, 1,1-DCE는 1,1,1-TCA의 분해 과정에서 생성된 것임을 확인할 수 있었다. 한편, 일부 VOCs는 자주 함께 검출되었으며, 기준치를 초과하는 VOCs의 농도도 일부 시료에서만 관찰되었는데, 이는 여러 가지 VOCs를 다량으로 사용하는 특정 오염원이 지하수 오염을 야기하였다는 것을 의미한다. 이들 오염원의 영향을 확인하기 위해 지하수 시료를 채수 지점의 토지 이용 특성과 채수 지점 주변의 토지 이용 특성을 기준으로 각각 구분하여 통계분석을 실시하였다. 통계 분석 결과, 운수업체, 스포츠센터와 같은 시설이 지하수 수질 오염과 밀접하게 관련이 있음을 알 수 있었다. MTBE의 검출 빈도는 자동차 이용과 상관관계가 높았고, 톨루엔과 클로로포름의 경우, 제조활동 및 하수처리시설과 상관관계가 높았다. PCE의 경우, 지정폐기물의 배출량과 상관관계가 높았다. 지하수 내 VOCs의 농도는 시간에 따라 변화하는 양상도 보였는데, 우기 시 발생하는 희석효과, 오염원의 유입과 자연적인 분해 과정이 복합적으로 영향을 미친 것으로 판단된다.
        68.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        Volatile organic silicon compounds (namely as siloxanes) are impurities in biogas generated from landfill and biogas.They have been known to cause damages to gas combustion engines. However, factors affecting process design decisionshave been less studied. In this research, we experimentally determined the gas-liquid partition coefficients (Kp) of siloxanesby applied the equilibrium partition experiment in closed system. we also investigated the effects of liquid solutes onsiloxanes partitioning. Five different types of siloxanes and five different types of liquid solutes (distilled water, nutrientsolution, ferrous sulfate solution, and surfactant solutions) were selected for this study. Dimensionless gas-liquid partitioncoefficients of siloxanes were determined to be 8.808 for L2, 2.278 for L3, 1.455 for L4, 3.435 for D4, and 0.770 forD5. Partition coefficients varied by liquid solutes, Especially for surfactants as liquid solutes, mass transfer of siloxanesfrom gas to liquid was enhanced, showing the lowest coefficients of partitioning.
        69.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        This study assessed the analysis method for measuring volatile organic silicon compounds (namely as siloxanes) by usinggas chromatography with flame ionization detector. Calibration standard gas was made in a laboratory by using six volatileorganic silicons as model gas. Two different types of working gas were prepared to evaluate quality control in GC-FIDanalysis. Less than 0.2 RSD% of repeatability of retention time was observed in the analysis of calibration standard gas. Inthe linearity test, the highest coefficient of determination (R2) was found to be 0.997 for L2 among volatile organic siliconcompounds. This study demonstrated that quantification of volatile organic silicon compounds can be performed by usingGC-FID analysis with direct injection mode, and the GC calibration can be covered by the gas-phase standard method.
        71.
        2013.01 KCI 등재 서비스 종료(열람 제한)
        In order to study the seasonal patterns and possible origins of air concentrations of volatile organic compounds(VOC), measurements were taken with GC-MS at 3 sampling sites in Jinju for 12 months from Mar. 2010 to Feb. 2011. Atmospheric VOC are sampled on tubes containing solid adsorbents(Tenax TA) with a time resolution of 2hrs. Composition and concentration of VOC are analysed with a GC system equipped with thermal desorption apparatus(ATD). The most abundant compound appeared to be Toluene, Ethylbenzene and m,p-Xylene. The mean concentrations of Benzene were 0.20 ppb at GN site, 0.18 ppb at DA site, and 0.25 ppb at SP site, respectively. VOC concentration showed a strong seasonal variation, with higher concentrations during the spring and lower concentrations during the summer. The results showed that monthly fluctuations in measured VOC concentrations depended on variations in the strength of sources, as well as on photochemical activity and meteorological conditions. In Jinju, the total VOC emissions for 2009 were estimated to be 4,407 ton/year by Clean Air Policy Support System(CAPSS). It is shown that solvent use 57.5%(2,534 ton/yr), waste treatment and disposal 23.3%(1,025 ton/yr), and mobil source-road traffic 12.2%(537 ton/yr) are the most significant anthropogenic source.
        72.
        2012.02 KCI 등재 서비스 종료(열람 제한)
        Indirect CO2 effect due to non-methane volatile organic compound (NMVOC) emissions from solvent and product use and fugitive NMVOC emissions from fuels in the Republic of Korea and 13 Annex I countries under United Nations Framework on Climate Change were estimated and the proportions of them to total greenhouse gas (GHG) emissions ranged from 0.092% to 0.45% in 2006. Indirect greenhouse effect (CO2, CH4, and O3) were estimated at 13 photochemical assessment monitoring sites in the Republic of Korea using concentrations of 8 NMVOCs of which indirect global warming potential (GWP) were available. The contribution of toluene to mixing ratio was highest at 11 sites and however, the contribution of toluene to indirect greenhouse effect was highest at nine sites. In contrast to toluene, the contributions of ethane, butane, and ethylene were enhanced. The indirect greenhouse effects of ethane and propane, of which ozone formation potentials are the lowest and the third lowest respectively among targeted 10 NMVOCs, ranked first and fourth highest respectively. Acetaldehyde has relatively higher maximum incremental reactivity and is classified as probable human carcinogen however, its indirect GWP ranked second lowest.
        73.
        2012.01 KCI 등재 서비스 종료(열람 제한)
        This study investigated the characteristics of selected volatile organic compounds(VOCs) in newly-finished residential buildings, before the occupants moved in. This investigation was carried out by measuring the indoor and outdoor concentrations of selected VOCs before the occupants moved in and by utilizing an indoor mass balance model. Among 25 target VOCs, five aromatics(benzene, ethyl benzene, toluene, m,p-xylene, and o-xylene) were detected in all samples of both indoor and outdoor air. Toluene was most abundant VOC in the indoor air of new apartments, with a median value of 168 mg m-3. Unlike other VOCs, halogenated compounds would not be significantly emitted from building materials. The indoor air concentrations of all selected VOCs, except for 1,3,5-trimethyl benzene, exhibited significant correlations each other, while for outdoor air concentrations, five aromatics only were significantly correlated between them. The emission rate of toluene was higher for the current study(median value, 76.8 mg m-2 h-1) than for a previous study, while the emission rates of limonene, a-pinene and b-pinene(geometric means of 2.4, 13.8 and 9.6 mg m-2 h-1, respectively) were lower and the emission rates of m,p-xylene and 2-butanone(geometric means of 10.9 and 21.3 mg m-2 h-1, respectively) were similar. Although there were a few exceptions, the emission strengths are likely proportional to indoor temperature, and appear to reversely proportional to air exchange rate.
        74.
        2010.02 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        전자선 조사에 따른 캠벨얼리 포도의 휘발성 유기성분의 조성과 저장 후(0, 30일)의 변화를 확인하고자 본 연구를 수행하였다. 캠벨얼리 포도에 0.25, 0.5, 0.75 및 1 kGy의 선량으로 전자선 조사한 후 SDE 방법으로 휘발성 유기성분을 추출하고 GC/MS로 분석하였다. 포도와 전자선 조사된 포도의 주요 화합물로는 butanol, hexanal, [E]-2-hexenal, hexanol, 3-methyl-butanol 등이 동정되었으며
        75.
        2009.10 KCI 등재 서비스 종료(열람 제한)
        This study was designed to evaluate qualitatively and quantitatively the pollutant compositions, which were emitted from three types of mosquito repellents(MRs)(mat-, liquid-vaporized, and coil-type) by utilizing a 50-L environmental chamber. A qualitative analysis revealed that 42 compounds were detected on the gas chromatography/ mass spectrometer system, and that the detection frequency depended upon chemical types. Nine of the 42 compounds exhibited a detection frequency of 100%. Four aromatic compounds(benzene, ethyl benzene, toluene, and xylene) were detected in all test MRs. The concentration equilibriums in the environmental chamber were achieved within 180 min after sample introduction. The coil-type MR represented higher chamber concentrations as compared with the mat- or liquid-vaporized-type MR, with respect to the target compounds except for naphthalene. In particular, the chamber concentrations of ethyl benzene, associated with the use of coil-type MR, were between 0.9 and 65 mg m-3, whereas those of mat- and liquid-vaporized-type MRs were between 0.5 and 2.0 mg m-3and 0.3 and 1.4 mg m-3, respectively. However, naphthalene concentrations in the chamber, where a liquid-vaporized-type MR was placed, were measured as between 17.8 and 56.3 mg m-3, but not detected in the chamber, where a mat- or coil-type MR was placed. The empirical model fitted well with the time-series concentrations in the environmental chamber(in most cases, determination coefficient, R2 ≳ 0.9), thereby suggesting that the model was suitable for testing emissions. In regards to the target compounds except for benzene, although they were emitted from the MRs, health risk from individual exposure to them were estimated not to be significant when comparing exposure levels with no observed adverse exposure levels or lowest observed adverse exposure levels of corresponding compounds. However, it was concluded that the use of MRs could be an important indoor source as regards benzene.
        76.
        2009.05 KCI 등재 서비스 종료(열람 제한)
        Because of the building is made airtight, Indoor Air Quality(IAQ) is go from bad to worse. There are many source of indoor pollution in any home. These include irritation of the eyes, nose, and throat, headaches, dizziness, and fatigue. Such immediate effects are usually short-term and treatable. In this study was measured and analyzed VOCs exposure levels and characteristic of Indoor air pollutant from new apartments in Korea. VOCs were measured indoor pre-residential and residential in new apartment and analyzed GC/MS. The concentration levels of indoor respirable TVOC were found to be higher than those of outdoor TVOC for new apartments. Before occupation, the average indoor and outdoor concentrations were 1498.61 ug/m3 and 468.38 ug/m3, respectively. After being occupied, the average indoor and outdoor concentration were 847.04 ug/m3 and 102.84, respectively. The concentrations of TVOC in new apartments before occupation were shown in the order of Toluene(328.12 ug/m3) > m,p-Xylene(163.67 ug/m3) > Ethylbenzene(80.70 ug/m3)>o-XYlene (67.04ug/m3). In addition, the TVOCs concentrations after occupation were also found in the order of Toluene (272.28 ug/m3) > m.p-Xylene(121.79 ug/m3) > Ethylbenzene(53.92 ug/m3)>O-Xylene(24.94 ug/m3). As a result, the concentrations of VOCs in new apartment houses were shown to be affected by indoor environment according activity patterns. So new apartments need to be controled in indoor air quality so that the residents can have more comfortable and healthier living environment.
        77.
        2008.08 KCI 등재 서비스 종료(열람 제한)
        Manufactures of automotive repair finishes are tending to reduce more and more the level of volatile organic compounds (VOCs) in their paint processes in order to comply with increasingly strict environmental legislation. The production of high solids paints is a way to solve this problem. However, the application of high-solids paints is limited primarily by the viscosity of resin which is strongly related to painting ability: the higher solid content, the lower desired property. In this study, alkyl copolymer with low viscosity was synthesized by the introduction of the monomers with long-side chains and functional groups which improve flexibility and cross-linking density, respectively. The solid content of the paint prepared with the synthesized resin was 80 wt% and its VOCs was reduced by 20%, compared to the commercialized paint. Also, the physical and mechanical properties of coatings on steel sheets were similar to commercialized one.
        78.
        2008.08 KCI 등재 서비스 종료(열람 제한)
        In this study, we measured volatile organic compounds in Gimhae city, South Korea. We selected twenty site and measured volatile organic compounds in ambient air by passive sampler when at sampling intervals of two month from April to December 2005. Passive sampler was exposed for fifteen day in ambient air. And samples were analyzed by GC/FID for volatile organic compounds. The results of each measured functional zone, mean concentration of each compound measured were generally higher the industrial complex area and traffic pollution area than residental area. Each area showed similar pattern for the observation period. concentration of measured each compound were the following order: winter > fall > spring > summer.
        79.
        2008.07 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to evaluate the characteristics of atmospheric concentrations of volatile organic compounds(VOCs) and aldehydes for near a large shipyard. Most of the painting work in marine coating is performed indoor and outdoor. Most of the VOCs are emitted to the atmosphere as the paint is applied and cures. The massive scale of a ship makes it difficult to capture the emissions from outdoor painting. The VOCs are an important health and contributors to photochemical smog. The VOCs and aldehydes samples were collected using adsorbent tube and 2,4-DNPH cartridge, and were determined by an automatic thermal desorption coupled with GC/MS and HPLC-UV analysis, respectively. A total of 16 aromatic VOCs and 12 aldehydes of environmental concern were determined. At indoor coating facilities, the most abundant compound among 16 target VOCs appeared to be m,p-xylene, being followed by o-xylene. But most of the aldehydes were extremely lower concentrations. The atmospheric concentration of VOCs, m,p-xylene concentrations were the highest and the mean value were outdoor workshop 11.323 ppb, residental area 5.134 ppb, and green area 2.137 ppb, respectively. However, the most aldehydes were extremely lower concentrations such as formaldehyde, acetaldehyde and non-detection such as iso-valeraldehyde, n-valeraldehyde and o-tolualdehyde.
        80.
        2008.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        본 연구에서는 현재 우리나라에서 그 소비량이 증가하고 있고, 여러 가지 효능이 확인되고 있는 한약재 중의 하나인 어성초를 10 kGy로 조사하여 휘발성 유기성분의 변화를 비교하였다. n-Pentane과 diethylether 혼합용매를 추출용매로 사용하여 연속증류추출장치로 추출하고 이를 GC/MS로 사용하여 분석.확인하였다. 비 조사 시료와 10 kGy의 선량으로 방사선 조사한 시료에서 확인된 휘발성 유기성분은 각각 83종과 85종이 확인되었다.
        1 2 3 4 5