검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 44

        21.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        작물생육의 품질 및 생산량에 중요한 영향을 미치는 온실 내 환경관리에 대한 연구는 활발히 진행되고 있다. 주로 온실 내 환경분포를 측정하는 방법으로는 한 두 지점에 대해서만 측정하여 온실 전체를 관리하는 시스템 으로 이루어졌으며 기존 환경데이터 측정방식은 각각의 데이터 로거 및 센서간의 배선들로 인하여 복잡한 시스템으로 구성되었다. 본 연구에서는 온실 내 설치 된 각 환경센서들로부터 지점별 데이터를 획득하고 획득된 데이터는 모니터링 프로그 램을 통하여 공기유동흐름을 측정하는 장치를 개발하였다. CAN 네트워크 통신을 통하여 환경센서들의 배선 토폴로 지를 간소화 했으며 프로토콜의 견고함으로 온실 내 모니 터링을 안정적으로 데이터를 수집할 수 있도록 구현되었다. 온실 내 공간의 환경요인 분포(온·습도 및 풍속 등) 들을 12개 지점에 배치하고 온·습도 및 풍속의 환경 데이 터는 상세히 파악할 수 있도록 X, Y, Z 축으로 다수의 측 정점(총 36점)을 선정하였다. 데이터 손실 및 다양한 온실 조건을 고려하여 비트레이트를 저속 125kbit/s로 구현하여 온실 내 100m 구역내에서 센서를 추가적으로 연장(총 90 개)할 수 있도록 구축되었다. 온도, 습도, 일사량, 풍향, 풍 속, 대기압 및 강우량 등 측정된 데이터는 LabVIEW에 연 동되어 실시간으로 센서 정보 출력이 가능하도록 구현되었다. 온실 내 환경 분포는 사용자의 편의에 따라 환경분포를 수평(XZ), 수직(YZ)축으로 가시화 할 수 있으며, 보간의 범위를 원하는 값으로 설정하여 보간 할 수 있도록 구현되었다. 추후에 온실 내의 공간에 따라 온도, 습도, 풍속, CO2 등의 환경 측정 실험을 통하여 CFD 모델링과의 검증 및 비교에 활용할 수 있을 것으로 판단된다.
        4,000원
        22.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, FLUENT v.16.1 was used to investigate the compressible flow generated by the supersonic jet spewed from a high pressure tube. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature of air was constantly 300 K and the variation of JPR (Jet Pressure Ratio) were 5, 50, 100, 150 and the variation of tube diameter were 10, 20, 30 cm. As a result, it was confirmed that the effective range was increased as the JPR was higher, but it was confirmed that the effective range was lower than the JPR rise, and that the effective range was increased as the diameter was larger. Therefore, it is found that the tube diameter is more sensitive than the JPR among the influence factors of jet, and if the result of this study were reflected in the design of high pressure system, it will contribute to the design of the system for preventing the second accident.
        4,000원
        23.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Subcutaneous emphysema is a rare but serious side effect of dental and oral surgery procedures. The condition is characterized by air being forced underneath the tissue, leading to swelling, crepitus on palpation, and with potential to spread along the fascial planes to the periorbital, mediastinal, pericardial, and/or thoracic spaces. A wide range of causes have been documented for the origin of subcutaneous emphysema during dental treatment including: crown preparations, other operative procedures, endodontic therapy, extractions, as well as oral surgery procedures. The patient was a 58-year-old woman who presented to the Seoul Saint mary’s hospital emergency department with a chief complaint of facial edema, dyspnea and chest discomfort after periodontal treatment using an air-flow equipment in local dental clinic. During treatment in the emergency department, oxygen therapy and intravenous injection of steroid and anti-histamine was done. it was noted that the patient had pain and swelling on left lower molar region, pus discharging on same site. Severe edema was observed on periorbital region to neck with heatness. An audible crepitus sound was heard during palpation on facial area. Neck CT scan and antibiotic therapy was done, as symptom suggesting dental abscess is observed. 3 hours after injection of antibiotics, the patient’s symptom was relieved, but she felt chest discomfort continuously. CT scan with constrast depicted confluent and extensive soft tissue emphysematous changes involving face and deep neck spaces and pneumomediastinum. The patient was refered to thoracic surgery department, oxygen therapy was decided continuously. After 10 hours, patient’s chief complaint was resolved, and discharged. After 1 week, all symptom was disappear and follow-up neck CT scan finding was disappearance of edema and pnuemomediastinum. We report a case of cervical subcutaneous emphysema and pneumomediastinum occurring after periodontal treatment using an air-flow equipment and case on the diagnosis and treatment of subcutaneous emphysema and pneumomediastinum, along with a review of the literature.
        4,000원
        24.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        CFD(Computational Fluid Dynamics) analysis was carried out to analysis the air flow characteristics of vertical axis wind turbine system with accelerating device. Geometric arc angle of the accelerating device affects the air flow characteristics in the turbine with the effect of Coanda generated from the curved surface. Air velocity distributions with the device angle variation are compared. Flow velocity increases with the device length, and the accelerating device plays a key role in decreasing the air velocity in the wake flow region. Maximum air velocity variation becomes reduced with the accelerating device, and it is largely affected by the arc angle. These results are expected to be utilized in various ways to determine the shape of accelerating device for wind power generation system.
        4,000원
        25.
        2014.02 구독 인증기관·개인회원 무료
        In this study, numerical simulation has been conducted to investigate flow characteristics in air supply room for container vessels by a 3-dimension numerical simulation. A commercial CFD program, FLUENT, is used on the analysis. It is shown that the air supply efficiency in this room can be improved by changing position of axial fan, even though other conditions still remain unchanged.
        26.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구에서는 정사각 단면을 갖는 덕트 내부에 원심력의 영향을 받는 유동의 천이특성을 실험 및 수치적으로 규명하였다. 실험적 연구로서 레이저도플러 속도계를 이용하여 축방향속도를 측정하였고, 상용소프트웨어인 플루언트를 이용한 전산유체 시뮬레이션으로 천이특성을 고찰하였다. 유동의 발달은 딘수와 굽힘각에 의존한다는 사실을 알 수 있었으며 덕트의 중앙에서의 속도분포는 원심력 때문에 내외벽보다 낮은 값을 나타내었다.
        4,000원
        27.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, 3 kinds of motorbike models in common use are studied by flow analysis. The maximum velocity becomes 20 to 21 m/s at the upper part of models and the maximum air pressure resistances becomes 202 to 229 Pa at the front of models. Model 3 becomes the most uniform flow and model 1 becomes the most nonuniform flow among 3 models. In case of outlet planes on flow models, model 3 has the smallest velocity as maximum velocity of 17.49 m/s among 3 models. Model 3 has also the smallest velocity in case of middle planes on flow models. As model 3 has the most uniform air flow stream and the least air resistance than model 1 or 2, it can be thought to cut down on the power consumption.
        4,000원
        28.
        2007.10 구독 인증기관 무료, 개인회원 유료
        To design an efficient and acceptable indoor air environment in a badminton gymnasium, it is important to study the velocity and temperature field in the conditioned room. For diverse airflow patterns, the k- c models with wall function near solid boundaries are adopted to simulate airflow distribution in the gymnasium. The simulated result is analyzed in this paper, and it provides the important reference for the design of air condition system and optimization of the project. CFD is effective design tool for air flow in large space, for it can give the velocity and temperature values at any point quantitatively.
        3,000원
        29.
        2007.10 구독 인증기관 무료, 개인회원 유료
        Correct air diffusion is essential for good air quality, comfortable conditions and energy efficiency in mechanical ventilation system. One general method to improve indoor air quality is to simply increase the ventilation rate. This approach, however, often conflicts with building energy efficiency requirement because conditioning outdoor air to the proper temperature, humidity level count for use as ventilation air consumes energy. Therefore, it is necessary for designers to predict the air movement properly. Successful predictions of room airflow yield such information as velocities and temperature distributions, which are useful to building design and analysis. In this paper, the application of computational fluid dynamic (CFD) techniques to large space design and analysis was investigated by comparing the results of CFD simulations and experimental results.
        3,000원
        32.
        2020.05 KCI 등재 서비스 종료(열람 제한)
        With continuous industrial development, the types, and amount of particulate matter (PM) have been increasing. Since 2018, environmental standards regarding PM have become more stringent. Pulse air jet bag filters are suitable for PM under the 20㎛ and, can function regardless of size, concentration and type. Filtration velocity and shape are important factors in the operation and design of the pulse air jet bag filters however, few established studies support this theory. In this research, numerical simulations were conducted based on experimental values and, several methods were employed for minimizing the pressure drop. In the pilot system, as the inlet duct velocity was faster than 19 m/sec, flow was not distributed equally and, re-entrainment occurred due to the hopper directional vortex. The multi-inlet system decelerated the hopper directional vortex by 25 ~ 30% , thereby decreasing total pressure drop by 6.6 ~ 14.7%. The guide vane system blocked the hopper directional vortex, which resulted optimal vane angle of 53°. The total pressure of the guide vane system increased by 0.5 ~ 3% at 1.5 m/min conditions. However, the filtration pressure drop decreased by 4.8 ~ 12.3% in all conditions, thereby reducing the operating cost of filter bags.
        33.
        2018.05 서비스 종료(열람 제한)
        The amount of sewage sludge emission is gradually increasing every year. However, the Ocean dumping of sewage sludge was prohibited since 2012 by london convention 96 protocol. Therefore, ground disposal method for recycling organic waste or utilizing to energy technology was needed. The heat is generated when sewage sludge has decomposed with the aerobic microbes. In this study, the heat would be applied to dehydrate sewage sludge. The drying efficiency was evaluated according to Air Flow Rate(AFR) and the mixing proportion of the returned sludge. At the experiments used returned sludge Which was dried at 40% moisture content. As a result, the most high temperature was indicated when it mixed 30% and optimal AFR for maintaining aerobic condition was 200 mL/min.kg. During 14days of Biodrying, the highest temperature of reactor was 46℃ and maintained 5~7days are higher than 40℃. and also 18.8% of moisture was eliminated. These results show that using Biodrying to sewage sludge has economic potential compared to hot-air drying and can be one of the method to produce SRF with additional treatment.
        34.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.
        35.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        기포가 포함된 다상흐름의 측정은 중요함에도 불구하고 많은 제약이 있었다. 특히, 공극률이 높은 다상 흐름은 밀도차의 급격한 변화와 두꺼운 공기-물 경계면으로 인해 측정이 매우 어렵다. 본 연구에서는 공극률에 상관없이 기포흐름을 측정할 수 있는 기포영상유속측정법과 다발 광섬유유동측정계를 소개하고자 한다. 기포영상측정기법의 경우, 화상측정시 발생하는 원근에 의한 오차를 최소화하고 추정할 수 있는 피사계 심도에 대한 계산방법을 제시하여 정도 분석을 위한 방안을 제시하였다. 다발 광섬유유동측정계는 얇은 광섬유의 특성을 이용해 다발로 제작하여 측정률을 증가시키고자 하였다. 제시된 두 기법을 기포플룸에 적용하여 신뢰도를 검토하였으며 잘 일치하는 것을 확인하였다. 소개된 기법으로 대표적인 하천 다상흐름인 도수흐름을 측정하여 그 적용성을 검토하였다.
        36.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        Desorption characteristics of VOCs were investigated for the effective recovery of gasoline vapor. The adsorption capacity and desorption capacity were excellent at relatively low temperatures. The differences in the desorption capacity were not large in the condition; desorption temperature 25℃, desorption pressure 760 mmHg, inlet air flow rate 0.5 L/min, but were relatively great in the condition; desorption temperature 0℃, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min. The desorption ability of pentane was increased to about 81.4%, and the desorption ability of hexane was increased to about 102%, also the desorption ability of toluene was increased to about 156.7% by changes of temperature, pressure, inlet air flow rate in the experimental conditions. The optimum desorption condition for the effective recovery of VOCs was in the conditions; desorption temperature 0℃, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min.
        37.
        2013.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The capacity of a pressure fan can be designed based on the air flow resistance of containers packed with fruits and vegetables in a pressure cooling system. This study was conducted to develop an air flow resistance model that was dependent on changes in the air flow rate and the method of stacking containers. The air flow resistance of a container packed with uniformly shaped balls was 1.5 times greater than the sum of the air flow resistance of a vacant container and that of a wire net container packed with only balls. In addition, the air flow resistance increased exponentially as the width of the stacks increased; however, the air flow resistance did not increase greatly as the length and height of the stacks increased, which indicates that the air flow resistance is primarily influenced by the width of the stack in the air flow direction. The air flow resistance in two lines of stacking was up to 17% less than that of the width of the stack. It was also possible to determine the air flow resistance using a function of the air flow resistance through a single container and develop a prediction model. A prediction model of air flow resistance that is dependent on the stacking method and the air flow resistance of a single container was developed.
        38.
        2008.07 KCI 등재 서비스 종료(열람 제한)
        Gwangyang Bay is often severely confronted by photochemical pollutants due to its location and dense emissions. It is located in a basin on the south coast of the Korean peninsula and is crossed by a remarkable cluster of hills and mountains of a small horizontal scale that forms a channel. Clearly, the air flow field has a great influence on the dispersion of air pollutants. The characteristics of the wind flow patterns have an important effect on the dispersion of pollutants emitted. In these situations, the distribution of the ozone concentration is extremely complicated because of the superposition of circulations of the air flow fields, especially in complex coastal region. In this study, we examined the distribution of the high level ozone on Gwangyang Bay particularly during the episode day (for 5 years). Among these days, A high level ozone was induced by the development of a sea/land breeze local circulation system, as well as by an anabatic/catabatic flow from the mountains and valley with weakening of the synoptic wind. High level ozone distribution pattern(6 types) on Gwangyang bay is analyzed and the comparison of each pattern reveals substantial localized differences in intensity and distribution of ozone concentration from the site coherence and UPA analysis of ozone concentration. The observed VOC concentration had much difference in concentrations and daily variations between Jungdong and Samil.
        39.
        2007.02 KCI 등재 서비스 종료(열람 제한)
        파력발전장치 중 진동수주(Oscillating Water Column)형은 3단계 에너지 변환과정을 거치게 된다. 그 중 파랑에너지를 공기에너지로 변환하는 장치인 공기실의 형상을 바꿔가며 그에 따른 성능을 상용 CFD 코드인 FLUENT를 이용한 수치 해석 기법으로 연구하여 보았다. 통상 OWC형 파력발전장치는 공기실과, 터빈이 설치되는 덕트 간에 효율적인 이유로 급축소 형태를 취하고 있는데 이 때 공기실과 터빈 연결부의 형상이 파력발전 장치 전체 성능에 중요한 영향을 미치므로 공기실내의 압력을 최소화하고 터빈 유입유속의 가속화가 용이한 가장 적합한 형상을 정상 및 비정상 해석을 통하여 찾고자 하였다.
        40.
        2005.06 KCI 등재 서비스 종료(열람 제한)
        Enormous apartment complexes in urban areas, temporary inversion state and heat island effect occur due to the strong sunshine and weak wind speeds which hinders the dispersion of air pollutants that are emitted from neighboring areas of apartment complexes. In this study, analysis were conducted by using the Fluent code based on the CFD(Computation Fluid Dynamics), including building layout, material, building height from the ground surface, the heat, analysis of flow field in the apartment complex. It was estimated that the temporal radiation inversion phenomenon during the daytime, which was caused by the weak wind speed and higher temperatures in the upper level, contributed to the stagnation of the air pollutants in the lower layer of the apartment complex.
        1 2 3