검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 32

        1.
        2023.05 구독 인증기관·개인회원 무료
        For Korean nuclear fuel cycle project, it is necessary to design and evaluate the integrity of spent fuel storage. For the design and evaluation of spent fuel storage, it is necessary to evaluate the properties of various materials used in spent fuel storage. The materials previously considered in the design of nuclear power plants were limited to static properties and were listed in design and manufacturing code and standards. However, for the evaluation of the storage containers in scenarios such as transportation and events, dynamic material property evaluations are required. Research on the dynamic properties of materials is generally conducted in the fields of automotive and aerospace, and most of the studies are on metal materials under sheet conditions. Since the structural materials of the storage containers for used nuclear fuel are mostly composed of thick materials, consideration should be given to property evaluation methodology and quantitative comparison. In this study, the mechanical properties of stainless steel material with canister application were evaluated according to the strain rate, and the crack resistance evaluation was also performed. It was confirmed the changes in strength and crack resistance according to the increase in strain rate and observed differences in microstructural hardening behavior.
        2.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 oC. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 oC and -196 oC exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.
        4,000원
        3.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the high-temperature oxidation properties of austenitic 316L stainless steel manufactured by laser powder bed fusion (LPBF) is investigated and compared with conventional 316L manufactured by hot rolling (HR). The initial microstructure of LPBF-SS316L exhibits a molten pool ~100 μm in size and grains grown along the building direction. Isotropic grains (~35 μm) are detected in the HR-SS316L. In high-temperature oxidation tests performed at 700oC and 900oC, LPBF-SS316L demonstrates slightly superior high-temperature oxidation resistance compared to HR-SS316L. After the initial oxidation at 700oC, shown as an increase in weight, almost no further oxidation is observed for both materials. At 900oC, the oxidation weight displays a parabolic trend and both materials exhibit similar behavior. However, at 1100oC, LPBF-SS316L oxidizes in a parabolic manner, but HR-SS316L shows a breakaway oxidation behavior. The oxide layers of LPBF-SS316L and HR-SS316L are mainly composed of Cr2O3, Febased oxides, and spinel phases. In LPBF-SS316L, a uniform Cr depletion region is observed, whereas a Cr depletion region appears at the grain boundary in HR-SS316L. It is evident from the results that the microstructure and the hightemperature oxidation characteristics and behavior are related.
        4,000원
        4.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.
        4,000원
        5.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.
        4,000원
        6.
        2016.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The hydrogen embrittlement of two austenitic high-manganese steels was investigated using tensile testing under high-pressure gaseous hydrogen. The test results were compared with those of different kinds of austenitic alloys containing Ni, Mn, and N in terms of stress and ductility. It was found that the ultimate tensile stress and ductility were more remarkably decreased under high-pressure gaseous hydrogen than under high-pressure gaseous argon, unlike the yield stress. In the specimens tested under high-pressure gaseous hydrogen, transgranular fractures were usually observed together with intergranular cracking near the fracture surface, whereas in those samples tested under high-pressure gaseous argon, ductile fractures mostly occurred. The austenitic high-manganese steels showed a relatively lower resistance to hydrogen embrittlement than did those with larger amounts of Ni because the formation of deformation twins or microbands in austenitic highmanganese steels probably promoted planar slip, which is associated with localized deformation due to gaseous hydrogen.
        4,000원
        7.
        2016.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of 23.4 mJ/m2 to 27.1 mJ/m2. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformationinduced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.
        4,000원
        8.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The ductile-brittle transition behavior of two austenitic Fe-18Cr-10Mn-N-C alloys with different grain sizes was investigated in this study. The alloys exhibited a ductile-brittle transition behavior because of an unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy specimens with a smaller grain size had a higher yield and tensile strengths than those with a larger grain size due to grain refinement strengthening. However, a decrease in the grain size deteriorated the low-temperature toughness by increasing the ductile-brittle transition temperature because nitrogen or carbon could enhance the effectiveness of the grain boundaries to overcome the thermal energy. It could be explained by the temperature dependence of the yield stress based on low-temperature tensile tests. In order to improve both the strength and toughness of austenitic Fe-Cr-Mn-N-C alloys with different chemical compositions and grain sizes, more systematic studies are required to understand the effect of the grain size on the mechanical properties in relation to the temperature sensitivity of yield and fracture stresses.
        4,000원
        9.
        2013.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.
        4,000원
        10.
        2013.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Over the past few decades, high-nitrogen austenitic steels have steadily received greater attention since they provide a unique combination of high strength and ductility, good corrosion resistance, and non-magnetic properties. Recently, highnitrogen 18Mn-18Cr austenitic steels with enhanced strength have been developed and widely used for generator retaining rings in order to prevent the copper wiring from being displaced by the centrifugal forces occurring during high-speed rotation. The high-nitrogen austenitic steels for generator retaining ring should be expanded at room temperature and then stress relief annealed at around 400˚C to achieve the required mechanical properties. In this study, four kinds of high-nitrogen 18Mn-18Cr austenitic steels with different nitrogen content were fabricated by using a pressurized vacuum induction melting furnace, and then the effects of nitrogen content, cold working, and stress relieving on tensile properties were investigated. The yield and tensile strengths increased proportionally with increasing nitrogen content and cold working, and they further increased after stress relieving treatment. Based on these results, a semi-empirical equation was proposed to predict the tensile strength of highnitrogen 18Mn-18Cr austenitic steels for generator retaining rings. It will be a useful for the effective fabrication of high-nitrogen 18Mn-18Cr austenitic steels for generator retaining rings with the required tensile properties.
        4,000원
        11.
        2013.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of δ-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and δ-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.
        4,000원
        12.
        2010.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cubic boron nitride (c-BN) is a promising material for use in many potential applications because of its outstanding physical properties such as high thermal stability, high abrasive wear resistance, and super hardness. Even though 316L austenitic stainless steel (STS) has poor wear resistance causing it to be toxic in the body due to wear and material chips, 316L STS has been used for implant biomaterials in orthopedics due to its good corrosion resistance and mechanical properties. Therefore, in the present study, c-BN films with a B4C layer were applied to a 316L STS specimen in order to improve its wear resistance. The deposition of the c-BN films was performed using an r.f. (13.56 MHz) magnetron sputtering system with a B4C target. The coating layers were characterized using XPS and SEM, and the mechanical properties were investigated using a nanoindenter. The friction coefficient of the c-BN coated 316L STS steel was obtained using a pin-on-disk according to the ASTM G163-99. The thickness of the obtained c-BN and B4C were about 220 nm and 630 nm, respectively. The high resolution XPS spectra analysis of B1s and N1s revealed that the c-BN film was mainly composed of sp3 BN bonds. The hardness and elastic modulus of the c-BN measured by the nanoindenter were 46.8 GPa and 345.7 GPa, respectively. The friction coefficient of the c-BN coated 316L STS was decreased from 3.5 to 1.6. The wear property of the c-BN coated 316L STS was enhanced by a factor of two.
        4,000원
        13.
        2009.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The spot weldability of dissimilar metal joints between stainless steels (AISI316) and interstitial free (IF) steels were investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensileshear strength, hardness, and microstructure. The fracture surface was investigated by using a Scanning Electron Microscopy (SEM). The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the STS316 sheet was larger due to the higher bulk-resistance. The microstructure of the fusion zone was fully martensite. In order to evaluate the microstructure further, dilution of stainless steels were calculated and imposed onto the Schaeffler diagram. The predicted microstructure from the Schaeffler diagram was martensite. In order to confirm the predicted microstructure, XRD measurements were carried out. The results showed that that initial weld nugget was composed of austenite and martensite.
        4,000원
        18.
        2002.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For the austenitic stainless steel (304L) manufactured by metal injection molding(MIM), the effects of copper content and sintering temperature on the mechanical properties, antibacterial activities, corrosion resistance, and electric resistances were investigated. The specimens were prepared by injection molding of the premixed powders of water-atomized 304 L and Cu with poly-acetyl binders. The green compacts were prepared with various copper contents from 0 to 10 wt.% Cu, which were debound thermally at 873 K for 7.2 ks in gas atmosphere and subsequently sintered at various temperatures from 1323 K to 1623 K for 7.2 ks in Ar gas atmosphere. The relative density and tensile strength of the sintered compacts showed the minimum values at 5 and 8 wt.% Cu, respectively. Both the relative density and the tensile strength of the specimen with 10 wt.% Cu sintered at 1373 K showed the highest values, higher than those of copper-free specimen. Antibacterial activities investigated by the plastic film contact printing method for bacilli and the quantitative analysis of copper ion dissolved in water increased as the increase of the copper content to stainless steels. It was also verified by the measurement of pitting potential that the copper addition in 304 L could improve the corrosion resistance. Furthermore the electric conductivity increased with the increase of copper content.
        4,000원
        19.
        2000.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Densificationbehavior of conventional austenitic stainless steel powder compacts was studied by comparing the relative density of sintered compact(Ds)with that of green compacts(Dg)prepared with various catbon contents and P/M process. Dg of 304and 316 powders by warm compaction under pressure of 686 MPa at heating temperature of powder(553K) and dies (573K) were 80% and 81%, repectively, whichwere 2 and 3% higher than those of conventional green compacts at the same pressure. Ds of 304 compacts sintered at 1373K in H2 gas has the same value of 84% max. regardless of compacting temperature, and Ds of 316 compacts at the same sintering conditions were 80% by conventional compaction and 83% by warm compaction. Oxygen contents of 304 and 316 sintered compacts were increased 1.43∼2.94% and 0.010∼0.921% higher than those of raw powders and warm green compacts, respectively. In other case, Ds of 316 compacts sintered at 1573K in vacuum had the same value of 86%max. And Ds of 316 compacts at the same sintering conditions were 83% and 86% by conventional and warm compaction, respectively. Oxygen contents of 304 sintered compacts were 0.321% and 0.360%, and in case of 316, they were 0.419% and 0.182% by the respective compating condition. With carbon additions in the range 0.1∼0.6% Ds increased to the extent of 86∼89% in 304 sintered compacts, and to 82∼84% and 85∼87% in 316 according to different two compacting peocesses compared to those of sintered compacts without carbon addition.
        4,000원
        20.
        2000.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 오스테나이트계 스테인리스 강재(STS 304)에 대해 NaCl 환경 중에서 틈부식 특성을 연구하기 위해, 정전압 분극장치에 의해 분극특성시험을 실시하여 NaCl 용액의 농도에 따른 STS 304 강재의 틈부식에 의한 분극 거동에 대해 연구한 결과는 다음과 같은 결론을 얻었다. 1) 틈부위는 심하게 부식되고 틈의 인접한 외부 표면은 부동태화된다. 2) 오스테나이트계 스테인리스강재인 STS 304 강재는 분극거동에 있어서 부식 전위는 3.5% NaCl까지 농도가 증가할수록 귀전위화되다가 농도가 3.5%이상으로 증가할수록 오히려 비전위화된다. 3) 부식 전위하에 전류밀도는 NaCl 농도가 3.5%까지 증가할수록 더 많이 배류되다가 3.5% 이상으로 증가할수록 오히려 더 적게 배류된다.(이 논문의 결론(요약) 부분임)
        4,000원
        1 2