검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 46

        21.
        2014.04 구독 인증기관·개인회원 무료
        Pultruded FRP can be regarded as an orthotropic material due to its manufacturing process that pull-out fibers impregnated with polymeric resin, which is suitable to produce structural member with unlimited lengths of reinforced polymer structural shapes with a various shape of cross-section. However, fiber distribution in the cross-section is not uniform because of the characteristics of pultrusion process. Therefore, random fiber distribution causes the difference of the modulus of elasticity throughout the cross-section. In this paper, closed-form local buckling analysis is conducted on the pultruded FRP I-shape compression members. The mechanical properties used to analytical investigations are obtained from the coupon test. The coupon test specimens are taken from the pultruded FRP I-shape member. Moreover, the local buckling tests of pultruded FRP I-shape members are conducted and test results are compared with the analytical results.
        22.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is same such as the provision of shear buckling strength of steel composite box girder web panel and plate girder web panel in Korea Highway Bridge Design Standards(2012). But the web panel of steel composite box girder is different from the web of plate girder in that the upper slab and lower flange are connected to the web. So a different shear behavior of the girders is expected. In this study, To calculate a reasonable elastic shear buckling strength of steel composite box girder web panel, ABAQUS program was used. The results from F.E.A and previous studies are compared. It is shown that the web shear buckling strength of steel composite box girder of Korea Highway Bridge Design Standards(2012) is the most conservative.
        4,000원
        23.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is aimed to examine the influence of the rotational stiffness of U-shaped ribs on the local buckling behaviors of laminated composite plates. Applying the orthotropic plates with eight layers of the layup [(0°)4]s and [(0°/90°)2]s, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. There is a need to develope a simple design equation to establish the rotational stiffness effect, which could be easily quantified by comparing the theoretical critical stress equation for laminated composite plates with elastic restraints based on the Classical laminated plate theory. Through the parametric numerical studies, it is confirmed that there should clearly exist an increasing effect of local plate buckling strength due to the rotational stiffness by closed-section ribs. An applicable coefficient for practical design should be verified and proposed for future study. This study will contribute to the future study for establishing an increasing coefficient for the design strength and optimum design of U-rib stiffened plates.
        4,000원
        24.
        2012.04 구독 인증기관·개인회원 무료
        The seismic design range for the national public facilities and power plant is expanded such as it becomes the earthquake Disaster Relief Act with the finance since 2008 as the seismic design concept is highly regarded, etc. The reinforcement of the brace is essential for the seismic performance security of the structure which is unable to be satisfied the current seismic design criteria. The tension brace in which the slenderness ratio is big was designed to the unique lateral force resistive element. And the buckling is generated in the first stage and it is unable to exhibit the structural capability. In this research, the buckling strength improvement the reinforcing method of the suggested tension brace tries to be verified through the experiment.
        25.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        장스팬 철골부재설계시, 응력보다는 처짐에 의해 부재단면이 결정되며 이러한 경우 춤을 극대화 할 수 있는 셀룰러 빔이 매우 유리하다. 셀룰러 빔은 웨브의 단면결손으로 인해 웨브의 좌굴강도가 일반형강보의 비해 작아지게 된다. 본 논문에서는 셀룰러 빔의 개구부간격과 직경비, 그리고 개구부직경과 웨브두께비를 주요변수로 비선형 유한요소해석을 통해 웨브포트의 좌굴강도를 평가하였다. 또한 이를 BS5950 Part 1에서 제시하고 있는 기준과 비교분석하였다.
        4,000원
        26.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근, 건설되어지는 강구조물들의 장경간화 및 고층화로 인하여 고강도강재의 적용이 점차 요구되고 있다. 고강도강재는 적용구조물들을 공간 및 두께들 감소시킴으로써 외관성 및 경제성을 증가시킬 수 있는 장점이 있다. 이러한 고강도 강재의 적용을 위해서는 좌굴에 대한 기준이 필요하나 현재 국내의 경우 이러한 좌굴에 관한 연구가 미흡하다. 이에 본 연구에서는 3차원 탄소성 유한변위 프로그램을 이용하여 고강도 박스단면 트러스 부재의 좌굴거동에 대한 해석적 연구를 수행하였다. 고강도강재를 적용한 박스단면 트러스부재의 허용 압축응력에 대한 기준을 제안하였으며 그 적용성을 확인하였다. 그리고 고강도 트러스 부재의 설계에도 적용할 수 있음을 명확히 하였다.
        4,000원
        27.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 강사장교의 극한강도를 다루고 있다. 강사장교의 극한강도를 평가하기 위하여 비선형 비탄성 해석 접근법과 분기점 좌굴 고유치해석 접근법인 유효접선탄성계수법을 사용하여 예제를 수행하였다. 이를 위하여 초기형상을 고려한 실용적인 비선형 비탄성 해석기법을 제시하였다. 초기형상 해석 시각 형상해석 단계마다 보-기둥 부재의 부재력 대신 개선된 구조물형상을 고려하였다. 보-기둥 부재의 기하학적 비선형은 안정함수를 사용하여 고려하였고, 재료적 비선형은 CRC 접선계수와 포물선 함수를 사용하여 고려하였다. 또한, 케이블 부재의 기하학적 비선형은 할선탄성계수 값을 사용하여 고려하였다. 본 연구에서 제안한 해석기법으로 예측된 하중-변위 곡선들이 다른 연구에 의한 결과들과 비교 검증 되었으며, 제시된 3차원 강사장교 모델들에 대하여 제안한 해석기법과 비탄성 좌굴해석을 사용하여 극한강도를 비교하였다.
        4,500원
        28.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선체구조 부재에는 이중저의 거더 및 늑판등에서 유공을 가진 판이 많이 사용되고 있는데, 이는 중량 경감, 사람 및 화물의 이동, 배관 등의 목적이다. 보통은 강도상 큰 문제가 없는 부위에 위치하지만, 매로는 불가피하게 높은 응력이 작용하는 부위에 설치해야 할 경우가 있다. 이러한 판에 유공의 존재는 면내 하중에 의한 탄성좌굴강도 및 최종강도에 큰 영향을 주게 된다. 따라서, 유공판의 탄성좌굴강도 및 최종강도 평가는 선박의 초기 구조설계단계에서 구조부재 치수를 결정할 매, 검토해야 할 중요한 설계기준 중의 한가지가 된다. 그러므로, 유공판에 대한 합리적이고 신뢰적인 탄성좌굴강도 및 최종강도 설계식이 필요하게 되었다. 본 연구에서는 다양한 종횡비와 유공의 치수비 그리고 세장비의 영향을 고려하여 탄소성대변형 유한요소법을 근간으로 한 해석코드인 ANSYS(7.1)를 사용하여 시리즈해석을 수행하였다.
        4,000원
        29.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In case of rectangular latticed pattern which shearing rigidity is very small, it has a concern to drop Buckling-strength considerably by external force. So, by means of system to increase buckling-strength, there is a method of construction that lattice of dome is reinforced by braced member. In a case like this, shearing rigidity of braced member increase buckling-strength of the whole of structure and can be designed economically from the viewpoint of practice. Therefore, this paper is aimed at investigating how much does rigidity of braced member united with latticed member bearing principal stress of dome increase buckling-strength of the whole of structure. the subject of study is rectangular latticed domes that are a set of 2-way lattice dome which grid is simple and number of member gathering at junction is small. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems.
        4,000원
        30.
        2017.05 KCI 등재 서비스 종료(열람 제한)
        비정형 판 부재의 탄소성 좌굴 강도를 평가할 수 있는 새로운 지표를 제안하였다. 부재 경계면에 작용하는 하중 또는 경계면의 변화 에 따른 외부일 또는 변형에너지를 부재의 평형 변형경로에 따라 계산하고, 이 에너지의 이차 변분량의 부호가 양에서 음으로 바뀌는 시점을 안 정한계로 제안하였다. 판 부재의 단면력을 등분포 또는 선형으로 근사한 상태로 단면력을 사용하여 좌굴한계를 평가하는 현 기법과는 반대로 단면력의 변화가 비선형적인 복잡한 경우에도 간단히 좌굴한계를 평가할 수 있다. 선형탄성 문제에 대해서는 본 기법의 결과와 전통적인 방법 이 동일한 결과를 도출한다.
        31.
        2016.04 서비스 종료(열람 제한)
        Steel box girder has not only an excellent constructability but is also a lightweight structure. Compression flanges of steel box girder under negative moment need stiffeners to increase buckling strength, thereby increasing the construction cost. In this study, compression flanges using trapezoidally bended plates were investigated to replace existing flat flanges.
        32.
        2016.04 서비스 종료(열람 제한)
        Elasto-plastic buckling strength is evaluated based on the procedure given by DNV-RP-C208. To calculate the safety margin of an irregular-shaped steel plates, usage factor in DNV-RP-C201 is modified then used.
        33.
        2015.10 서비스 종료(열람 제한)
        TLP (Tension Leg Platform) is the marine structure for the buckling evaluated to ensure the safety. ABAQUS program was conducted the buckling of TLP. A global model which simulated entire TLP structure has too many elements. This leads a large consumption of time and the hardware for analysis. Therefore, dividing the global model into the detailed models and the local models are significant. In this study, the buckling strength evaluation of the TLP structure members was proceed via non linear finite element analysis presented in DNV-RP-C208.
        34.
        2015.04 서비스 종료(열람 제한)
        In this study, the shear buckling strengths of the trapezoidal and sinusoidal corrugated plates with the same self-load were compared, and their characteristics and tendencies were analyzed. In the preceding comparative study of corrugation shapes, the corrugation wave depth and the corrugation wave angle were the same. As these target, A linear buckling analysis was conducted, and the differences in the shear buckling mode and the buckling stress were analyzed.
        35.
        2015.02 서비스 종료(열람 제한)
        Recently, as the level of market competition in the structural engineering field continues to rise, structural designers are finding other ways to make their designs stand out. One way of doing that is to make the designs more economical without sacrificing efficiency. As a result, the use of stepped beams and the studies involving it has become more common. Stepped beams are beams that have a sudden increase in cross section along its length. The change in cross section is made by increasing the width and/or the thickness of the flanges along a certain length while maintaining the dimensions of the web. Most of the studies involving lateral torsional buckling of stepped beams are focused on developing equations and studying the effects of symmetry. However, the studies involving actual test experiments are still very limited. Thus, this study has three main objectives. The first objective of this study is to give a brief historical overview on the series of studies involving the lateral torsional buckling capacity of stepped beams and give an idea on its current state of the art. The second objective is to determine if the intuitive expectation that the lowest critical moment always corresponds to uniform bending moment holds true for stepped beams. The degree of symmetry is varied and several loading conditions are observed. The third objective of this study is to determine the actual inelastic lateral torsional buckling capacity of doubly stepped singly symmetric I-beams having compact and non-compact flange sections subjected to two point loading condition and to use the results obtained to determine the applicability of previously proposed equations in predicting the buckling strength of stepped beams. The results are obtained by conducting actual destructive tests on doubly stepped I-beams using a universal testing machine and running simulation tests using the finite element program, ABAQUS. The main factors that are considered for the experimental and finite element analysis are the degree of beam symmetry, the loading condition, the supports, the stepped beam factors and the unsupported length. The degree of symmetry of all the stepped beams analyzed is fixed at 0.7. The unsupported lengths of the beams analyzed are 3 meters and 4 meters. The results obtained from the analysis are compared with the results from design specifications to determine the effects of steps and from proposed design equations to determine the equations’ applicability and safety. Finally, the results revealed that the stepped beams did have an increase in lateral torsional buckling capacity in comparison with the prismatic beams and that the proposed equations are suitable to be used in predicting the strength of stepped beams having compact flanges under the observed loading condition. However, for beams having non-compact flanges, the previously proposed equations produced over conservative results. Further study can also be made on stepped beams with varying degree of symmetries, loading conditions, boundary conditions and stepped beam parameters.
        36.
        2015.02 서비스 종료(열람 제한)
        This study focuses on the effects of load height on the inelastic lateral buckling of doubly stepped I-beams. The effects of having compact and non-compact flanges are also covered by this study. Two sections are analyzed: one having compact flanges and web while the other section has a compact web and non-compact flanges. The loadings are limited to those having an inflection point of zero. Also, the three main locations for the loads analyzed would be at the top of the flange, at the shear and at the bottom flange. The nonlinear analysis is done using the finite element program, ABAQUS. Also, to take into consideration the effect of inelastic buckling, residual stresses and geometric imperfections are applied to the models made. The results of the analysis would then determine if the location of the loads has significant effects on the buckling strength of the stepped beams. Also, the results are compared to the results of previous studies involving the effects of load-height on prismatic beams. The final results are tabulated and conclusions and new design methods are provided.
        37.
        2014.02 서비스 종료(열람 제한)
        Several studies concerning the lateral torsional buckling of horizontally curved I-beams have been made by different researchers. However, these studies are mostly limited to linear analysis and involving only single girders having single span. Nonlinear analysis of horizontally curved I-beams have been very limited or almost none. The aims of this study are to give a brief summary of the studies that have been made involving several factors concerning the lateral torsional buckling capacity of horizontally curved I-beams and to show several analyses that focused on determining the behavior of the horizontally curved I-beams that experience lateral torsional buckling failure. Subjects discussed in this study include: (1) different design provisions involving LTB of curved I-beams; (2) different equations that can be used concerning LTB of curved I-beams; (3) effect of cross frames; (4) effects of cross frame spacing; and (5) analysis results and trends comparing LTB strength of curved I-beams to straight beams. The summary of these studies will be essential in determining the future studies that has to be made involving the lateral torsional buckling of horizontally curved I-girder bridges which should cover single girder and multi girder systems as well as single span and multi span curved bridge systems.
        38.
        2014.02 서비스 종료(열람 제한)
        It has been proven in recent studies that for monosymmetric I-section beams, in considering bending moment diagrams caused by any combination of applied end moments and transverse loads acting at the shear centre, the lowest critical lateral torsional buckling moment does not necessarily correspond to uniform bending. This finding is different from the intuitive expectation that researchers have that for lateral torsional buckling of thin walled beams, the lowest critical lateral torsional buckling moment always corresponds to a uniform bending moment diagram. To determine the applicability of the findings stated, considering stepped beams, this study will be focusing on the comparison of the lateral torsional buckling strength trends in monosymmetric I-beams having doubly stepped and compact cross section. Several loading conditions will be applied to see the effect of different moment diagrams having different inflection points on the lateral torsional buckling strength of stepped beams. The study will be made using the finite element program, ABAQUS. The study will investigate stepped beams having monosymmetric ratios ranging from 0.5 to 0.9. These ratios correspond to varying bottom flange width while keeping the top flange width unchanged. Both elastic and inelastic analysis will be carried out for this study. Finally, the findings for this study will be shown using illustrative figures and conclusions will be made.
        39.
        2012.11 서비스 종료(열람 제한)
        In this study, structural analysis was performed for the trapezoidal steel box girders. The girder is assumed to be made not by welded but by folded. Because the girder has no welded connection, the material can show its full strength without residual stresses. In the nonlinear analysis, however, there should be difference between sharp-corner girder and rounded-corner girder. Therefore, the parametric study was performed due to the radius of fillet to estimate the shear buckling strength of the girders.
        40.
        2012.02 서비스 종료(열람 제한)
        본 연구에서는 비탄성 영역 내 비지지 길이가 존재하고 양단 및 일단 계단식 단면을 가지는 일축대칭 변단면 I형보의 해석적·이론적 연구를 토대로 하여 비탄성 횡-비틀림 좌굴 강도 해석을 실시하였다. 하중조건으로는 비지지 길이 내 모멘트가 0인 지점이 개수에 따라 모델을 구분지어 적용시켰으며, 플랜지 길이방향 비, 너비 방향 비, 두께의 비로 변단면 I형보를 나타내었다. 비선형 횡-비틀림 좌굴 해석을 위해 단순직선분포를 잔류응력으로 가정하였으며, 국내 I형강 표준 치수 허용치에 근거하여 부재 길이의 0.1%를 초기 최대 횡변위로 적용하여 초기변형으로 고려하였다. 유한요소해석에 사용된 프로그램은 ABAQUS(2009)이며, 회귀분석프로그램인 MINITAB(2006)을 이용해 간편한 설계식을 제안하고 있다. 본 연구 결과에서 개발·제안된 식은 향후 비탄성 횡-비틀림 좌굴 강도에 대한 연구에 많은 도움이 될 것이다.
        1 2 3