검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 246

        21.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to examine the influences of two human chorion gonadotrophins (hCGs) being injected into young or aged (45- to 65-week old) outbred (ICR) mice on developmental capacity of oocytes retrieved. In vitro-culture and parthenogenetic activation of oocytes retrieved were employed for the assessment. Superovulation was determined as being induced when more than 25 oocytes were retrieved. No aged mice were superovulated, while in contrast, 67-100% were superovulated in the 6- to 8-week-old (young) mice. In the aged, hCG injection yielded better retrieval (5 vs. 13 to 14.8 oocytes/mouse). Overall, no significant difference between two hCGs was detected but between the young and aged, significant differences in maturational arrest (0% vs. 39% MI arrest and 46% vs. 15% degeneration) and developmental capacity (24% vs. 46% 8-cell embryo development) were detected. In conclusion, hCG injection contributes to increasing oocyte retrieval from aged outbred mice, but the kinds of gonadotrophin influenced the efficiency of hyperstimulation induction in specific ages.
        4,000원
        22.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was designed to determine the effect of monosodium glutamate (MSG) on in vitro maturation (IVM) of oocytes and early development of parthenogenesis (PA) embryos in pigs. Each IVM and IVC medium was supplemented with various concentrations (0, 0.1, 0.5 and 5 mM) of MSG and non-essential amino acids (NEAA) depending on the experimental design. Immature pig oocytes were matured for 44 h and then oocytes reached metaphase II (MII) stage were electrically activated to induce parthenogenesis (PA). When immature oocytes were treated with MSG in the absence of NEAA during IVM, nuclear maturation (83.1-87.1%), intra-oocyte glutathione content, cumulus expansion, and cleavage (91.4-93.4%) of PA embryos were not influenced by MSG treatment at all concentrations. However, blastocyst formation of PA embryos was significantly increased by 5.0 mM MSG (45.3 ± 6.2%) compared to control (25.6 ± 3.4%). MSG treatment during IVM in the presence of NEAA did not show significant effect on nuclear maturation of oocytes and blastocyst formation after PA while 0.5 mM MSG (89.3 ± 1.9%) decreased (P < 0.05) cleavage of PA embryos compared to 0.1 mM MSG (94.6 ± 1.1%). When PA embryos were treated for 7 days with MSG during IVC, 5.0 mM MSG significantly decreased blastocyst formation (27.8 ± 4.9%) compared to no treatment (41.4 ± 1.9%) while no decrease in blastocyst formation was observed in 0.1 and 0.5 mM (37.4 ± 3.4% and 34.4 ± 2.6%, respectively). Our results demonstrated that 5 mM MSG in a NEAA-free chemically defined maturation medium showed positive effect on PA embryonic development while 5 mM MSG treatment during IVC was deleterious to PA embryonic development in pigs.
        4,000원
        23.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mitochondrial dysfunction is found in oocytes and transmitted to offspring due to maternal obesity. Treatment of obese mothers with endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL) can reverse the mitochondrial dysfunction and result in normal embryonic development. Pig oocytes have also shown ER stress mostly in metaphase II stage. ER stress in oocytes may hinder the in vitro production of pig embryos. This study investigated the effect of ER stress inhibition by SAL treatment during in vitro maturation (IVM) of porcine oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we tested various concentrations of SAL. SAL at 10 nM showed higher (P < 0.05) developmental competence to the blastocyst stage (55.6%) after parthenogenesis (PA) than control (44.2%) while not different from other concentrations (49.2, 51.6, and 50.8% for 1, 50, and 100 nM, respectively). Secondly, we performed time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h of IVM significantly improved PA embryonic development to the blastocyst stage compared to control (40.5, 46.3, 51.7 and 60.2% for control, 0 to 22 h, 22 to 44 h and 0 to 44 h of IVM, respectively, P < 0.05). Glutathione (GSH) content is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on developmental competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decreased ROS level (P < 0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (39.6% vs. 24.7%, P < 0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development PA and cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.
        4,000원
        25.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this experiment was to explore the effects of Roscovitine (Rosco) prior to in vitro maturation (IVM) of immature pig oocyte. Brilliant cresyl blue test has been used to select the good quality of oocyte. Specifically, the effects of Rosco exposure on nuclear and cytoplasmic maturation, diameter, intracellular glutathione (GSH) and reactive oxygen species (ROS), and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT), and gene expression levels in SCNT embryos have been measured. Cumulus oocyte complexes (COCs) have been exposed in 75 μM of Rosco for 22 and 44 h. The COCs that were matured in the IVM for 44 h without Rosco used as control group. Diameter of matured porcine oocytes 44 h culture with Rosco was significantly lower than 22 h culture with Rosco and control groups. GSH was higher in control group than 22 h and 44 h with Rosco but reduction of ROS in 22 h than 44 h with Rosco. In PA, exposure with Rosco 44 h oocytes group has been significantly lower than 22 h and control group in rates of maturation, cleavage and blastocyst formation. Similarly, in SCNT embryos rates of maturation, cleavage and formation of blastocyst have been also significantly lower in 44 h Rosco treated group than other two groups. SCNT embryos treated with Rosco 22 h showed greater expression levels of POU5F1, DPPA2 and NDP52Il mRNA compared with other two groups. Our results demonstrate that Rosco treatment with 22 h prior to IVM improves the development competence of porcine oocyte.
        4,300원
        26.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Autophagy is an intracellular degradation and recycling system. Oocyte maturation is dynamic process, in which various proteins should be synthesized and degraded. In our previous study, we reported the loci of autophagosome and dynamics of autophagic activity in porcine oocytes during In Vitro maturation. In this study, we verified loci of autophagosome in porcine follicular cumulus-oocyte complex by detection of microtubule-associated protein 1A/1B-light chain 3 (LC3) which is the reliable marker of autophagosome. Porcine ovary including various sizes of follicles was fixed within 1 hour after collection from slaughterhouse. After fixation, immunohistochemistry was conducted on sliced ovary tissue containing various sizes of follicles by using LC3 antibody. As a result, LC3 signal was clearly detected in both cumulus and oocytes of various sizes of follicles. We also found ring shaped signal which represent autophagosome near oocyte membrane. Most of the signals in oocytes were localized nearby cellular membrane while evenly dispersed in cumulus cells. Therefore, this result suggests that autophagy occurs in porcine COCs (cumulus-oocyte complexes) at follicular stage.
        4,000원
        27.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to determine the effect of fructose that was supplemented to a chemically defined in Vitro maturation (IVM) medium on oocyte maturation and embryonic development after parthenogenesis in pigs. The base medium for in Vitro maturation (IVM) was porcine zygote medium (PZM) that was supplemented with 0.05% (w/v) polyvinyl alcohol (PVA) or 10% (v/v) porcine follicular fluid (pFF). In the first experiment, when immature pig oocytes were matured in a chemically defined medium that was supplemented with 5.5 mM glucose or with 1.5, 3.0 and 5.5 mM fructose, 3.0 mM fructose resulted in a higher nuclear maturation (91.5%) than 1.5 and 5.5 mM fructose (81.9 and 81.9%, respectively) but showed a similar result with 5.5 mM glucose (94.2%). However, there was no significant differences among groups in the embryo cleavage (89.4-92.4%), blastocyst formation (37.5-41.1%), and mean cell number of blastocyst (30.8-34.2 cells). Fructose at the concentration of 3.0 mM (1.08 pixels/oocyte) resulted in a higher intra-oocyte glutathione (GSH) content than 1.5 and 5.5 mM fructose (1.00 and 0.87 pixels/oocytes, respectively) while the cumulus cell expansion was not influenced. In the second experiment, effect of individual and combined supplementation of a chemically defined maturation medium with 5.5 mM glucose or 3.0 mM fructose was examined. No significant effect was found in the nuclear maturation (86.3-92.6%). Embryo cleavage was significantly increased by the combined supplementation with glucose and fructose (95.2%) compared to that with 3.0 mM fructose only (85.7%) while blastocyst formation (37.3-42.8%) and embryonic cell number (33.3-34.1 cells) were not altered. Effect of supplementation of pFF-containing medium with glucose and fructose + glucose was examined in the third experiment. No significant effect by the supplementation with glucose and fructose or glucose alone was observed in the nuclear maturation of oocytes (90.7-94.1%) and blastocyst formation (51.0-56.5%). Our results demonstrate that 3.0 mM fructose was comparable to 5.5 mM glucose in supporting in Vitro oocyte maturation and embryonic development after parthenogenesis and could be used as an alternative energy source to glucose for in Vitro maturation of pig oocytes.
        4,000원
        28.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The elevated temperature and high humidity has been known as main reason for heat stress on animals and cause detrimental effects on productivity of organisms and physiological conditions of normal bioactivities. The aims of this study were to evaluate the relationship between time of heat shock simulation during in vitro maturation and developmental competence of subsequent embryo after in vitro fertilization. Heat shocked cumulus-oocyte complexes (COCs) of Korean native cattle were subjected to normal conditions for 22, 21, 18 and 12 h respectively and transferred to heat stress inducing condition at 40.5 °C in other incubator for 0 (control), 1 and 4 h. After maturation for 22 h, the oocytes were fertilized and cultured in mSOF media for 8 d and examined the developmental capacity of embryos. There were no differences in maturation and cleavage rates between 0, 1 and 4 h heat socked oocytes, but blastocysts formation were lower in the 4 h heat stressed oocytes. The apoptotic cells of developed blastocysts were also increased in at day 8 with 4 h heat shocked oocytes. These results indicate that heat shock on oocytes during maturation could cause negative effects on the developmental competence of embryos.
        4,000원
        29.
        2017.05 구독 인증기관·개인회원 무료
        Oocyte is the central factor in the bi-directional communication axis in the ovarian follicles. It controls the cumulus or granulosa cells to perform functions which are beneficial for its own development via secreting paracrine growth factors, including GDF9 and BMP15. The aim of this study was to investigate whether the recombinant GDF9 and BMP15 are able to promote meiotic resumption and cumulus expansion of canine COCs during IVM, as well as to demonstrate the actions of GDF9 and BMP15 in regulating the expression of connexin transcripts in the ovarian granulosa cells. As results, GDF9 and BMP15 significantly improved the meiotic resumption rate and cumulus expansion by activating ERK1/2 signaling. Treatments with GDF9 significantly improved the expression of CyclinB1 but inhibited the expression of Cx43 transcripts. In addition, cumulus expansion genes (MAPK1, Ptgs2, Tnfaip6 and Ptx3) were differentially improved by GDF9 and BMP15. In the ovarian granulosa cells, GDF9 suppressed the expression of Cx43 transcripts by binding ALK4/5/7 receptors and activation Smad2/3 signaling, whereas, BMP15 stimulated the expression of Cx43 transcripts by binding ALK2/3/6 receptors and activating Smad1/5/8 signaling. In conclusion, by regulating functions of granulosa/cumulus cells, oocyte has the potential to enhance the growth and maturation of itself.
        30.
        2017.05 구독 인증기관·개인회원 무료
        Somatic cell nuclear transfer (SCNT) is the technique which generates embryos by transferring diploid nucleus into an enucleated oocyte, it has produced specific animals successfully in a variety of species. However, the developmental capacity of SCNT embryos is still relatively lower than that of embryos produced in vivo. Oocyte is a kind of lipid rich cells, its quality limits the efficiency of embryo production. L-carnitine is a co-enzyme facilitating the transportation of long chain fatty acids across the inner mitochondria membrane where fatty acids are used for generating adenosine triphosphate (ATP) via beta-oxidation. It also has antioxidant actions which may protect mitochondrial membranes and DNA against damage induced by reactive oxygen species (ROS). Whether L-carnitine is functional in bovine SCNT embryos are unknown. Therefore, the objective of this study was to examine the effects of L-carnitine on oocyte maturation and developmental competence of subsequent SCNT embryos. L-carnitine was supplemented during IVM, then intracellular ROS and GSH levels, mitochondrial activity, gene expression of COCs were analyzed at the end of IVM. SCNT embryos were produced subsequently, apoptosis detection and gene expression evaluation were performed in blastocysts. In the results, treatments with 1.5 mM and 3 mM L-carnitine significantly improved maturation rates (P<0.05). Treatments with 3 mM L-carnitine effectively induced improvement in nuclear maturation, intracellular GSH levels and mitochondrial activity, as well as a reduction in intracellular ROS levels (P<0.05). mRNA levels of CPT1A, ACAA1, ACAA2, AREG, EREG, SOD1, GPX4, GLUT1 and CDC2 transcripts were effectively up-regulated by 3 mM L-carnitine treatments (P < 0.05). Similarly, 3mM L-carnitine induced an increase in blastocyst developmental rates and an improvement in blastocyst quality (P<0.05). Our study indicates that L-carnitine treatment during IVM improves oocyte nuclear maturation and subsequent SCNT embryo development.
        31.
        2017.05 구독 인증기관·개인회원 무료
        Growth differentiation factor 8 (GDF8) is a member of the transforming growth factor-β that has been identified as a strong physiological regulator. The purpose of this study is to investigate the effects of GDF8 on porcine oocytes during in vitro maturation (IVM). We investigated a specific gene transcription levels in oocytes and cumulus cells (CC) after IVM by realtime PCR arry, and specific protein expression and activation levels in matured CCs by western blotting. Each concentration (0, 1, 10, and 100 ng/ml) of GDF8 was added in maturation medium (TCM199) during process of IVM. Data were analyzed by ANOVA followed by Duncan using SPSS (Statistical Package for Social Science). Data are presented as the mean and Differences were considered significant at P < 0.05. After 44 h of IVM, oocytes are mechanically denuded from CCs with 0.1% of hyaluronidase, and then the separated oocytes and CCs were sampled following each group. To assess the effect of GDF8 on specific gene transcription level changes as a dose response during IVM, the realtime PCR array was performed. In CCs the 1- and 10 ng/ml of GDF8 supplement group showed the transcription co-factors CBP and SP1, cell metabolic regulator MAPK1, and cumulus expansion related genes Has2, Cox-2, Ptx3 and Areg transcription levels were significantly distinguished with control when hierarchically clustered by Euclidean distance with average linkage method after IVM. In matured oocytes the 10- and 100 ng/ml of GDF8 supplement group showed the maternal factors JMJD3 and Zar1, transcriptional regulator FOXO1, Sirt1 and Sirt2, mitochondrial activity factor Sirt3, ACSL3 and ACADL, anti-apoptosis gene BCL-2, and oocyte secrete factor BMP15 mRNA transcription levels were significantly distinguished compared with control. To determine effect of GDF8 supplement during IVM, the GDF8 down steam canonical regulator SMAD2/3 protein phosphorylation levels analyzed in CCs by western blotting. The 10- and 100 ng/ml supplement groups showed significantly increase phosphorylated (P)-SMAD3 (1.56 and 1.34 times higher than control) protein levels (P < 0.05). In conclusion, supplement of GDF8 during IVM activates FOXO homolog transcription and induced cumulus cells expansion via activation of SMAD3 signaling in CCs. While process of IVM, the transcriptional landscape changes in CCs may consequently result maternal factors accumulation and mitochondrial activation in oocytes.
        32.
        2017.05 구독 인증기관 무료, 개인회원 유료
        Oocyte is the central factor in the bi-directional communication axis in the ovarian follicles. It controls the cumulus or granulosa cells to perform functions which are beneficial for its own development via secreting paracrine growth factors, including GDF9 and BMP15. The aim of this study was to investigate whether the recombinant GDF9 and BMP15 are able to promote meiotic resumption and cumulus expansion of canine COCs during IVM, as well as to demonstrate the actions of GDF9 and BMP15 in regulating the expression of connexin transcripts in the ovarian granulosa cells. As results, GDF9 and BMP15 significantly improved the meiotic resumption rate and cumulus expansion by activating ERK1/2 signaling. Treatments with GDF9 significantly improved the expression of CyclinB1 but inhibited the expression of Cx43 transcripts. In addition, cumulus expansion genes (MAPK1, Ptgs2, Tnfaip6 and Ptx3) were differentially improved by GDF9 and BMP15. In the ovarian granulosa cells, GDF9 suppressed the expression of Cx43 transcripts by binding ALK4/5/7 receptors and activation Smad2/3 signaling, whereas, BMP15 stimulated the expression of Cx43 transcripts by binding ALK2/3/6 receptors and activating Smad1/5/8 signaling. In conclusion, by regulating functions of granulosa/cumulus cells, oocyte has the potential to enhance the growth and maturation of itself.
        4,000원
        33.
        2016.10 구독 인증기관·개인회원 무료
        Mitochondrial dysfunction is found in oocytes and transmitted to the offspring due to maternal obesity. This is curable by endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL). Recently pigs are considered as a model animal for biomedical research due to its physiological similarity with human. Pig oocytes have shown ER stress mostly in metaphase II stage. ER stress is hindering the in vitro embryo production (IVP). This study investigated the effect of ER stress inhibition by using SAL during 44 h of in vitro maturation (IVM) of oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we defined the concentration of SAL during IVM of pig oocytes. SAL at 10 nM showed higher (44.2 to 55.6%, P<P0.05) development competence to the blastocyst state than control and other concentrations after parthenogenetic activation (PA). Secondly, we sorted out the time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h and 0 to 44 h of IVM improved PA embryonic development significantly (40.5, 51.7 and 60.2% for control, 22 to 44 h and 0 to 44 h of IVM, respectively, P<0.05). Glutathione (GSH) level is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on development competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decrease ROS level (P<0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (24.7 vs. 39.6%, P<0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.
        34.
        2016.10 구독 인증기관·개인회원 무료
        Although in vitro production (IVP) techniques of porcine follicular oocytes have progressed and are well studied, the developmental potential of porcine oocytes matured in vitro remains low compared with those matured in vivo. It is well known that one of the reason occurred impair in vitro maturation (IVM) of porcine oocytes is the oxidative stress. Oxidative stress is mainly caused by reactive oxygen species (ROS) generation formed during cellular metabolism. β-cryptoxanthin (BCX) is one of the carotenoid pigment and possesses strong anti-oxidative and free radical scavenging activities and suppresses lipid peroxidation and nitrogen oxide production. The objective of this study was to examine the effects of BCX treatment on porcine oocyte during IVM and their in vitro developmental potential. The follicular oocytes were cultured in IVM medium supplemented with 0, 0.1, 1, 10 and 100 μM BCX (control, 0.1 B, 1 B, 10 B and 100 B). In analysis of intracellular ROS expression level after IVM, 1 B group was the lowest among all groups (p<0.05), while other BCX treated groups are similar to control group. Also, 1 B group was significantly decreased during the classified oocyte maturation stage (GVBD, MⅠ and MⅡ) than control (p<0.05). In addition, the relative mRNA expression level of antioxidant gene (superoxide dismutase-2 and peroxiredoxin-5) was significantly higher in 1 B group than control (p<0.05). After parthenogenetic activation, there was no different in the cleavage rate between two groups, however, the blastocyst formation rate was significantly higher in 1 B group than in control (p<0.05). In embryo quality, the total cell number and DNA fragmentation of blastocysts were no different between two groups. These results demonstrate that BCX is helpful for decreasing ROS level of porcine follicular oocytes and improves their developmental potential.
        35.
        2016.10 구독 인증기관·개인회원 무료
        The periods of elevated temperature and high humidity has been longer since last ten years and cause problems in program of artificial insemination or at the efficiency of in vitro production of transferable embryos. The aims of this study were to evaluate the relationship between time of heat shock (0, 1, 2 and 4), during in vitro maturation and developmental competence of subsequent embryo after in vitro fertilization. The develpmentat rate and percetage of apoptotic cells were evaluated on matured oocyte and day 8. 41℃ Heat treatment after IVM culture significantly decreased the developmental capacity of IVF embryos. Also the number of apoptotic cell in COCs, morula and blatostcysts was started to increase at 2 hr heat treatment but did not affect on the rate of maturation. These results indicate that heat treatment for 2 to 4 hr at 41℃ have negative effects on maturation rate of COCs and lower the developmental competence of heat shocked oocyte derived embryos.
        36.
        2016.10 구독 인증기관·개인회원 무료
        Zinc (Zn2+) is one of essential factors during mammalian oocyte maturation and fertilization. Previous studies showed that depletion of cellular Zn by metalion chelator impair asymmetric division of oocyte. But the detailed mechanism of these phenomena is unclear. We found that depletions of zinc by cell-permeable heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN) caused the decrease of cytoplasmic actin mesh level. Spire2-GFP is co-localized with zinc at the cortex and intracellular vesicle. By the treatment of TPEN, number of Spire2-GFP decorated vesicle is drastically decreased, indicating that Zn2+is essential for the localization of the spire in mouse oocyte. Two putative zinc-binding regions were located in the C-terminal part of Spire2. Mutations of zinc binding site on spire abolish its localization at the intracellular vesicle. Over expression of C-terminal region containing zinc binding site of spire impair oocyte maturations and decrease cytoplasmic actin mesh. Taken together, these results suggest that intracellular zinc is crucial for the proper localizations of spire in the mouse oocyte, and unraveling the novel regulatory mode of actin nucleator spire by Zn2+.
        37.
        2016.10 구독 인증기관·개인회원 무료
        The plastic monomer bisphenol A (BPA) is well known as a representative environmental hormones. Recent studies showed that the BPA exposure induced mitochondrial dysfunction and mitochondrial derived reactive oxygen species (mito-ROS). However, changes of antioxidant enzymes expression and ROS production from mitochondria according to the BPA exposure on in vitro maturation (IVM) of porcine oocytes have not been studied. We hypothesized that regulation of ROS production from mitochondria by BPA may play a critical role in meiotic maturation or expansion of cumulus cells in cumulus-oocyte complexes (COCs). To investigate the negative effects of BPA exposure on oocyte maturation, immature pig oocytes were matured in NCSU-23 medium supplemented with BPA (50, 75 and 100 μM) for 44 h. Expectedly, the rates of meiotic maturation and cumulus cell expansion of COCs in the BPA (75 μM) treated group was significantly lower than those of control group (p<0.01). Most of secretion factors expressions from COCs were significantly decreased (p<0.05) in the BPA treated COCs. Next, we investigated the intracellular ROS and mitochondrial specific superoxide production according to the BPA exposure using DCF-DA and mito-SOX staining, respectively. BPA exposure were showed that increasing of both intracellular ROS and mito-ROS, as well as mitochondrial related antioxidant enzymes (sod2, prdx3, prdx5) mRNA expression significantly increased (p<0.01) in COCs. And then, mitochondria membrane potential (MMP) dramatically reduced, and mitochondrial-derived apoptotic factors (bax, bcl-xl, caspase 3) mRNA expressions were increased (p<0.01) in BPA treated COCs. In additon, protein levels of mitochondrial-derived apoptosis genes (AIF, cleaved parp1 and caspase 3) were significantly increased (p<0.05) by BPA exposure. To confirm the reduction of BPA-induced mito-ROS, we used to the mitochondrial-targeted ROS scavenger, mito-TEMPO. Interestingly, addition of mito-TEMPO (0.1 μM) to the BPA pre-treated COCs recovered in meiotic maturation of porcine oocytes. These results demonstrated that BPA exposure was induced increasing of mitochondrial dysfunction, mito-ROS and mitochondrial-mediated apoptosis on pig oocyte maturation. Therefore, we suggest that controlling of mito-ROS plays a critical role in pig oocyte maturation in vitro. These findings will be helpful to solve causes of mitochondrial-related infertility.
        38.
        2016.10 구독 인증기관·개인회원 무료
        Melatonin has an important role as anti-oxidative effect and reducing of endoplasmic reticulum(ER)-stress on oocyte maturation and embryo development. Under ER-stress condition, unfolding protein response (UPR) is a defence mechanism in mammalian cells. Recently, regulation of UPR signaling genes are involved in oocyte maturation, embryo development and female reproduction. However, there is no report on the role of melatonin for UPR signaling and ER-stress mediated apoptosis during pig oocyte maturation progression. Moreover, the changes of UPR genes expression according to the porcine oocyte maturation is not yet fully understood. Here, we investigated the changes of UPR signal (BIP/GRP78, ATF4, p90/p50ATF6, and XBP1) and ER-stress apoptotic factor CHOP genes expressions in porcine oocyte maturation by Western blot and RT-PCR analysis. During oocyte maturation, UPR marker and CHOP genes expressions were significantly increased in matured oocytes or cumulus-oocyte complexes (COCs). UPR markers expressions were significantly increased by ER-stress inducer, tunicamycin (Tm), treated (1, 5, 10 μg/ml) groups in a dose-dependent manner compared with control group. To confirm the reducing of ER-stress by melatonin (0.1 μM), we were compared to the effects of ER-stress inhibitor, TUDCA (200 μM), after pre-treated Tm (5 μg/ml) for 22 h maturation. Expressions of UPR markers and meiotic maturation were recovered by melatonin (0.1 μM) in COCs. And, we observed the role of Grp78/Bip as UPR signaling beginning marker using siRNA. In result, reduction of Grp78/Bip gene expression by siRNA was induced the inhibition of oocyte maturation (32.5±10.1 vs control; 77.8±5.3), and p50ATF6 protein level was significantly decreased (p<0.001) in cultured COCs for 44 h. In addition, these results were recovered through the addition of melatonin (0.1 μM) or TUDCA (200 μM) in maturation medium. These results demonstrated that the regulation of UPR signaling via Grp78/Bip gene induction plays a critical role in porcine oocyte maturation in vitro. Furthermore, this present study first confirmed a functional link between inhibition effect of ER-stress by melatonin and regulating of UPR signaling in porcine oocyte maturation. In conclusion, melatonin improves the oocyte maturation and cumulus cells expansion of COCs through the regulation of UPR signal pathway by BIP/GRP78 against the ER-stress during porcine oocyte maturation periods.
        39.
        2016.10 구독 인증기관·개인회원 무료
        Mitotic spindle formation is regulated by centrosomes, composed of a centriole pair surrounded by pericentriolar materials(PCM) proteins. However, mammalian oocytes rely on acentriolar MTOCs for the function of meiotic spindle. The composition of acentriolar MTOCs and the molecular precesses that regulate the localization and accumulation in mammalian oocyte are not well understood. In this study, we analyzed the mechanisms of spindle microtubule nucleation and stability from MTOCs in mouse oocyte, and indentified Centrosomal protein192(CEP192) as a key regulator for acentriolar MTOC formation. CEP192 specifically colocalized with pericentrin (PCNT) during the oocyte maturaion. CEP192 proteins are localized throughout cytoplasm and around nucleus at GV stage, and then after BD stage, CEP192 proteins were further fragmented into smaller MTOCs around chromosomes. At metaphase, CEP192 proteins were concentrated in spindle pole. Knockdown of CEP192 using siRNAs resulted in metaphase I arrest. The arrested oocytes were characterized by reduced microtubule intensity and misalignment chromosome. Also at BD and ProMI stage, the oocytes reduced microtubule density and PCNT intensity. To confirm the mechanism of CEP192 regulation, we confirmed that PLK1 and AuroraA kinase were involved in CEP192 activation. The investigations for detailed molecular mechanisms of CEP192 and RanGTP for microtubule nucleation in oocytes are underway using various techniques including siRNA, mRNA, and positive or negative dominant injection and inhibitors.
        40.
        2016.10 구독 인증기관·개인회원 무료
        Growth differentiation factor 8 (GDF8) is a member of the transforming growth factor-β that has been identified as a strong physiological regulator. The purpose of this study is to investigate the effects of GDF8 on porcine oocytes during in vitro maturation (IVM). We investigated a specific gene transcription levels in oocytes and cumulus cells (CC) after IVM, and protein kinase B (PKB) expression and activation levels in matured CCs by western blotting. Each concentration (0, 1, 10, and 100 ng/ml) of GDF8 was treated in maturation medium (TCM199) while process of IVM. Data were analyzed by ANOVA followed by Duncan using SPSS (Statistical Package for Social Science). Data are presented as the mean and differences were considered significant at P < 0.05. After 44 h of IVM, oocytes are mechanically denuded from CCs with 0.1% of hyaluronidase, and then the separated each group of oocytes and CCs were sampled. To assess the effect of GDF8 on specific gene transcription level changes as a dose response during IVM, the realtime PCR was performed. In CCs, all of GDF8 treatment groups showed significantly higher CREB transcription regulator cbp mRNA and the 1- and 10 ng/ml treatment groups observed significantly increased cumulus expansion related genes areg, cox-2, has2, ptx3 and tnfaip6 transcription levels after IVM. In matured oocytes, the maternal factors jmjd3 and zar1, transcriptional regulator foxo1 and sirt1, mitochondrial activity factor sirt3 and acadl, and anti-apoptosis gene bcl-2 mRNA transcription levels were significantly increased in 1- and10 ng/mL of GDF8 treatment groups compared with control. To determine effect of GDF8 treatment during IVM, translation regulator PKB protein expression and phosphorylation levels were analyzed in CCs by western blotting. The 10 ng/ml treatment group showed significantly increased phosphorylated PKB (1.4 times higher than control) protein levels (P < 0.05). In conclusion, treatment 10 ng/ml of GDF8 during IVM activates CREB related transcription and induced cumulus cells expansion via activation of PKB signaling in CCs. The transcriptional landscape changes in CCs result maternal factors accumulation and mitochondrial activation in oocytes during IVM.
        1 2 3 4 5