검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        1.
        2022.05 구독 인증기관·개인회원 무료
        Tributyl phosphate (TBP) is a well-known and important compound in the nuclear industry for the nuclear fuel reprocessing, and it is also used in a various field such as plastic industry as antifoaming agent. Untreated organic pollutants in TBP can remain in the soil water and cause serious environmental pollution, thus it should be degraded through environmentally friendly methods. The non-thermal plasma-based advanced oxidation process (AOP) is one of the most widely studied and best developed processes owing to its simple structure and ease of operation. In this study, a plasma-based AOP was stably generated using submerged multi-hole dielectric barrier discharge (DBD) and applied to relatively high concentration of TBP solution. A submerged DBD plasma system was designed to directly interact with water, thereby producing reactive oxygen species (ROS) and functioning as a powerful oxidizer. Additionally, UV, O3, and H2O2 are generated by the developed plasma system without using any other additives to produce OH radicals for degrading organic pollutants; therefore, this system circumvents the use of complex and advanced oxidation processes. The electrical properties and concentrations of the active species were analyzed to establish optimal plasma operating conditions for degrading TBP solution. The results were analyzed by measuring the total organic carbon (TOC) and changes in solution properties. Based on these results, a degradation mechanism of TBP solution is proposed. After 50 min of plasma treatment, the concentration of TOC was gradually decreased. Consequently, we found that plasma-based AOP using submerged multi-hole DBD has advantages as an alternative technology for degrading organic pollutants such as TBP solution.
        2.
        2021.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.
        4,000원
        5.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ZrB2 ceramic and ZrB2 ceramic composites with the addition of SiC, WC, and SiC/WC are successfully synthesized by a spark plasma sintering method. During high-temperature oxidation, SiC additive form a SiO2 amorphous outer scale layer and SiC-deplete ZrO2 scale layer, which decrease the oxidation rate. WC addition forms WO3 during the oxidation process to result in a ZrO2/WO3 liquid sintering layer, which is known to improve the antioxidation effect. The addition of SiC and WC to ZrB2 reduces the oxygen effective diffusivity by one-fifth of that of ZrB2. The addition of both SiC and WC shows the formation of a SiO2 outer dense glass layer and ZrO2/WO3 layer so that the anti-oxidation effect is improved three times as much as that of ZrB2. Therefore, SiC- and WC-added ZrB2 has a lower two-order oxygen effective diffusivity than ZrB2; it improves the anti-oxidation performance 3 times as much as that of ZrB2.
        4,000원
        6.
        2019.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Oxide coatings are formed on die-cast AZ91D Mg alloy through an environmentally friendly plasma electrolytic oxidation(PEO) process using an electrolytic solution of NaAlO2, KOH, and KF. The effects of PEO condition with different duty cycles (10 %, 20 %, and 40 %) and frequencies(500 Hz, 1,000 Hz, and 2,000 Hz) on the crystal phase, composition, microstructure, and micro-hardness properties of the oxide coatings are investigated. The oxide coatings on die-cast AZ91D Mg alloy mainly consist of MgO and MgAl2O4 phases. The proportion of each crystalline phase depends on various electrical parameters, such as duty cycle and frequency. The surfaces of oxide coatings exhibit as craters of pancake-shaped oxide melting and solidification particles. The pore size and surface roughness of the oxide coating increase considerably with increase in the number of duty cycles, while the densification and thickness of oxide coatings increase progressively. Differences in the growth mechanism may be attributed to differences in oxide growth during PEO treatment that occur because the applied operating voltage is insufficient to reach breakdown voltage at higher frequencies. PEO treatment also results in the oxide coating having strong adhesion properties on the Mg alloy. The micro-hardness at the cross-section of oxide coatings is much higher not only compared to that on the surface but also compared to that of the conventional anodizing oxide coatings. The oxide coatings are found to improve the micro-hardness with the increase in the number of duty cycles, which suggests that various electrical parameters, such as duty cycle and frequency, are among the key factors controlling the structural and physical properties of the oxide coating.
        4,000원
        8.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Oxide layers were formed by an environmentally friendly plasma electrolytic oxidation (PEO) process on AZ91 Mg alloy. PEO treatment also resulted in strong adhesion between the oxide layer and the substrate. The influence of the KF electrolytic solution and the structure, composition, microstructure, and micro-hardness properties of the oxide layer were investigated. It was found that the addition of KF instead of KOH to the Na2SiO3 electrolytic solution increased the electrical conductivity. The oxide layers were mainly composed of MgO and Mg2SiO4 phases. The oxide layers exhibited solidification particles and pancake-shaped oxide melting. The pore size and surface roughness of the oxide layer decreased considerably with an increase in the concentration of KF, while densification of the oxide layers increased. It is shown that the addition of KF to the basis electrolyte resulted in fabricating of an oxide layer with higher surface hardness and smoother surface roughness on Mg alloys by the PEO process. The uniform thickness of the oxide layer formed on the Mg alloy substrates was largely determined by the electrolytic solution with KF, which suggests that the composition of the electrolytic solution is one of the key factors controlling the uniform thickness of the oxide layer.
        4,000원
        9.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we report the microstructure and the high-temperature oxidation behavior of Fe-Ni alloys by spark plasma sintering. Structural characterization is performed by scanning electron microscopy and X-ray diffraction. The oxidation behavior of Fe-Ni alloys is studied by means of a high-temperature oxidation test at 1000oC in air. The effect of Ni content of Fe-Ni alloys on the microstructure and on the oxidation characteristics is investigated in detail. In the case of Fe-2Ni and Fe-5Ni alloys, the microstructure is a ferrite (α) phase with body centered cubic (BCC) structure, and the microstructure of Fe-10Ni and Fe-20Ni alloys is considered to be a massive martensite (α’) phase with the same BCC structure as that of the ferrite phase. As the Ni content increases, the micro-Vickers hardness of the alloys also increases. It can also be seen that the oxidation resistance is improved by decreasing the thickness of the oxide film.
        4,000원
        10.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-Cr steels are the most promising candidate for interconnect in solid oxide fuel cells. In this study, an effective, dense and well adherent (LaSr)(CrCo) [LSCC] coating layer was produced onto 430 stainless steel (STS-430) by atmospheric plasma spraying and the oxidation behavior as well as electrical properties of the LSCC coated STS-430 were investigated. A significant oxidation of pristine STS-430 occurred at in air environment, leading to the formation of and scale layer up to after 1200h, and consequently increased an area specific resistance of . Although the plasma sprayed LSCC coating contained the characteristic pore network, the coated samples presented apparent advantages in reducing oxidation growth of STS-430, resulting a decrease in oxide scale thickness of at after 1200h. The area specific resistance of the LSCC coated STS-430 was much reduced to after exposure at for 1200h, compared to that of the pristine STS-403.
        4,000원
        11.
        2009.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon dioxide as gate dielectrics was grown at 400˚C on a polycrystalline Si substrate by inductively coupled plasma oxidation using a mixture of O2 and N2O to improve the performance of polycrystalline Si thin film transistors. In conventional high-temperature N2O annealing, nitrogen can be supplied to the Si/SiO2 interface because a NO molecule can diffuse through the oxide. However, it was found that nitrogen cannot be supplied to the Si/SiO2 interface by plasma oxidation as the N2O molecule is broken in the plasma and because a dense Si-N bond is formed at the SiO2 surface, preventing further diffusion of nitrogen into the oxide. Nitrogen was added to the Si/SiO2 interface by the plasma oxidation of mixtures of O2/N2O gas, leading to an enhancement of the field effect mobility of polycrystalline Si TFTs due to the reduction in the number of trap densities at the interface and at the Si grain boundaries due to nitrogen passivation.
        4,000원
        12.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The investigation is to modify the mechanical and chemical properties of Mg alloys using a combination of rapid solidification and surface treatment. As the first approach, was gas atomized and pressure sintered by spark plasma sintering process (SPS), showing much finer microstructure and higher strength than the alloys as cast. Further modification was performed by treating the surface of PM Mg specimen using Plasma electrolytic oxidation (PEO) process. During the PEO processing, MgO layer was initiated to form on the surface of Mg powder compacts, and the thickness and the density of MgO layer were varied with the reaction time. The thickening rate became low with the reaction time due to the limited diffusion rate of Mg ions. The surface morphology, corrosion behavior and wear resistance were also discussed
        4,000원
        13.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure, mechanical and electrochemical properties of plasma electrolytic coatings (PEO) coatings on Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn-2.0 wt%Y alloys prepared by gas atomization, followed by compaction at 320 for 10 min under the pressure of 700 MPa and sintering at 380 and 420 respectively for 24 h, were investigated, which was compared with the cast Mg-1.0 wt%Zn alloy. All coatings consisting of MgO and oxides showed porous and coarse surface features with some volcano top-like pores distributed disorderly and cracks between pores. In particular, the surface of coatings on Mg-1.0 wt%Zn-2.0 wt%Y alloy showed smaller area of pores and cracks compared to the Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn alloys. The cross section micro-hardness of coatings on the gas atomized Mg-Zn-Y alloys was higher than that on the cast Mg-1.0 wt%Zn alloy. Additionally, the coated Mg-1.0 wt%Zn-2.0 wt%Y alloy exhibited the best corrosion resistance in 3.5%NaCl solution. It could be concluded that the addition of Y has a beneficial effect on the formation of protective and hard coatings on Mg alloys by plasma electrolytic oxidation treatment.
        4,000원
        1 2