검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A bond-based peridynamic model has been reported dynamic fracture characteristic of brittle materials through a simple constitutive model. In the model, each bond is assumed to be a simple spring operating independently. As a result, this simple bond interaction modeling restricts the material behavior having a fixed Poisson’s ratio of 1/4 and not being capable of expressing shear deformation. We consider a state-based peridynamics as a generalized peridynamic model. Constitutive models in the state-based peridynamics are corresponding to those in continuum theory. In state-based peridynamics, thus, the response of a material particle depends collectively on deformation of all bonds connected to other particles. So, a state-based peridynamic theory can represent the volume and shear changes of the material. In this paper, the perfect plasticity is considered to express plastic deformation of material by the state-based peridynamic constitutive model with perfect plastic flow rule. The elastic-plastic behavior of the material is verified through the stress-strain curves of the flat plate example. Furthermore, we simulate the high-speed impact on 3D granite model with a nonlocal contact modeling. It is observed that the damage patterns obtained by peridynamics are similar to experimental observations.
        4,000원