검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 43

        1.
        2023.11 구독 인증기관·개인회원 무료
        The process of carbonization followed by a high-temperature halogenation removal of radionuclides is a promising approach to convert low-radioactivity spent ion-exchange (IE) resins into freereleasable non-radioactive waste. The first step of this process is to convert spent ion-exchange resins into the carbon granules that are stable under high-temperature and corrosive-gas flowing conditions. This study investigated the kinetics of carbonization of cation exchange resin (CER) and the changes in structures during the course of carbonization to 1,273 K. Both of model-free and modelfitted kinetic analysis of mixed reactions occurring during the course of carbonization were first conducted based on the non-isothermal TGAs and TGA-FTIR analysis of CER to 1,272 K. The structural changes during the course of carbonization were investigated using the high-resolution FTIR and C-13 NMR of CER samples pyrolyzed to the peak temperature of each reaction steps established by the kinetic analysis. Four individual reaction steps were identified during the course of carbonization to 1,273 K. The first and the third steps were identified as the dehydration and the dissociation of the functional group of —SO3-H+ into SO2 and H2O, respectively. The second and the fourth steps were identified as the cleavage of styrene divinyl benzene copolymer and carbonization of pyrolysis product after the cleavage, respectively. The temperature and time positions of the peaks in the DTG plot are nearly identical to those of the peaks of the Gram Schmidt intensity of FTIR. The structural changes in carbonization identified by high-resolution FTIR and DTG are in agreement with those by C-13 NMR. The results of a detailed examination of the structural changes according to NMR and FTIR were in agreement with the pyrolysis gas evolution characteristics as examined by TGA-FTIR.
        2.
        2023.05 구독 인증기관·개인회원 무료
        To analyze the radioactivity of 3H and 14C in miscellaneous radioactive wastes generated from nuclear power plants, a wet digestion method using sulfuric acid is currently used. However, sulfuric acid is classified as a special management material, and there is no disposal method for contaminated radioactive waste. Therefore, research on a thermal decomposition method that can analyze the DAW radioactive waste samples without using sulfuric acid is necessary. In this study, we will cover the final sample amount, sample injection method, and prevention of organic ignition to meet the minimum detection limit requirements of the analysis equipment. Through this research, optimal conditions for the thermal decomposition method for analyzing the radioactivity of 3H and 14C in DAW radioactive wastes generated from nuclear power plants can be derived.
        3.
        2023.05 구독 인증기관·개인회원 무료
        Dry active wastes (DAWs) are a type of combustible radioactive solid waste, which includes decontamination paper, protective clothing, filters, plastic bags, etc. generated from operating nuclear facilities and decommissioning projects. The volume of DAWs could be increased over time, disadvantage to higher disposal costs and space utilitization of disposal site. Additionally, incineration methods cannot be applied to DAWs, unlike general environmental waste, due to concerns about air pollution and the release of harmful chemicals with radioactive nuclides into the atmosphere. Recently, KAERI developed an alternative thermochemical process for reducing the volume of DAW, which involves a step-wise approach, including carbonization, chlorination, and solidification. The purpose of this process is to selectively separate the radioactive nuclides from carbonized DAWs that are less than clearance criteria, which can be disposed of as non-radioactive waste. In this research, we investigated the thermal decomposition characteristics of DAWs using nonisothermal thermogravimetric analysis, which was performed with different categorized wastes and heating conditions. As a result, the cellulose DAWs such as decontamination paper and cotton were thermally decomposed in three or four-step depending on the heating conditions. On the other hand, the hydrocarbon and rubber DAWs such as plastic bags and latex were thermally decomposed in one or two-step. Therefore, it could be suggested the thermochemical treatment conditions that minimize the decomposition of DAWs by controlling the reaction steps, and we will try to apply these results for cellulose type DAWs such as decontamination paper and cotton, which is generated majorly from the nuclear facilities in the future.
        4.
        2022.10 구독 인증기관·개인회원 무료
        Boric acid-containing B-10 is used in a nuclear reactor as a coolant and absorbs thermal neutrons generated during nuclear fission in the primary circuit. Boron-containing coolant water waste is generated from maintenance, floor drain, decontamination, and reactor letdown flows. There are two options for aqueous solution waste of boric acid. One is recycling and discharge through filtration, ion exchange, and reverse osmosis. The other is immobilization after evaporation and crystallization processes. The dry powder of boric acid waste liquid can be immobilized by cement, polymer, etc. Before the mid-1990s, concentrated boric acid waste was solidified with a cement matrix. To overcome the disadvantage of low waste loading of cement waste form, a method of solidifying with paraffin was adopted. However, paraffin solids were insufficient to be disposed of as final waste. Paraffin is a kind of soft solidified material and has low compressive strength and poor leaching resistance. As a result, it was decided as an unsuitable form for disposal. In KOREA, paraffin waste form was adopted for boric acid waste treatment in the 1990s. A large amount of paraffin waste forms about 20,000 drums (200 l drum) were generated to treat boric acid waste and were stored in nuclear power sites without disposal. In this study, we want to obtain high-purity boric acid waste by oxidizing and decomposing solid paraffin waste form through a boric acid catalytic reaction. In this reaction, paraffin is separated in the form of various by-products, which can then be treated through a liquid waste treatment device or an exhaust gas treatment device. The proper temperature for sample decomposition during the catalytic reaction was set through TGA analysis. Compositions of by-products and residues generated at each stage of the reaction could be analyzed to determine the state during the reaction. Finally, the boric acid waste powder was perfectly separated from paraffin waste form with disposable products through this pyrolysis process.
        5.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The facile production of high-purity mesophase pitch has been a long-standing desire in various carbon industries. Recently, polymer additives for mesophase production have attracted much attention because of their convenience and efficiency. We propose polyvinylidene fluoride (PVDF) as a strong candidate as an effective additive for mesophase production. The mesophase content and structural, chemical, and thermal properties of pitches obtained with different amounts of added PVDF are discussed. The influence of PVDF decomposition on mesophase formation is also discussed. We believe that this work provides an effective option for mesophase pitch production.
        4,000원
        8.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For solving phase separation of nanoparticles and graphene oxide (GO) in the application process, MgWO4– GO nanocomposites were successfully synthesized using three different dispersants via a facile solvothermal-assisted in situ synthesis method. The structure and morphology of the prepared samples were characterized by X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, Fourier transform infrared and Raman techniques. The experimental results show that MgWO4 nanoparticles are tightly anchored on the surfaces of GO sheets and the agglomeration of MgWO4 nanoparticles is significantly weakened. Additionally, MgWO4– GO nanocomposites are more stable than self-assembly MgWO4/ GO, which there is no separation of MgWO4 nanoparticles and GO sheets by ultrasound after 10 min. The catalytic results show that, compared with bare MgWO4, MgWO4– GO nanocomposites present better catalytic activities on the thermal decomposition of cyclotetramethylenete tranitramine (HMX), cyclotrimethylene trinitramine (RDX) and ammonium perchlorate (AP). The enhanced catalytic activity is mainly attributed to the synergistic effect of MgWO4 nanoparticles and GO. MgWO4– GO prepared using urea as the dispersant has the smallest diameter and possesses the best catalytic action among the three MgWO4– GO nanocomposites, which make the decomposition temperature of HMX, RDX and AP reduce by 10.71, 11.09 and 66.6 °C, respectively, and the apparent activation energy of RDX decrease by 68.6 kJ mol−1.
        4,000원
        9.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구는 고온 열분해를 통한 Cs, Sr 등 고방사성핵종의 고정화를 위하여 각각 Cs이 흡착된 CHA (K형 Chabazite zeolite)-Cs, CHA-PCFC (potassium cobalt ferrocyanide)-Cs 및 Sr이 흡착된 4A-Sr, BaA-Sr 등의 제올라이트 계에서 TGA 및 XRD에 의한 배소 온도 변화에 따른 상변환을 고찰하였다. CHA-Cs 제올라이트 계의 경우 900℃ 까지는 CHA-Cs의 형태를 유지하고 있으며, 1,000℃에서 무정형 단계를 거친 후 1,100℃에서 pollucite (CsAlSi2O6)로 재결정 되었다. 반면에 CHA-CFC-Cs 제올라이 트 계는 700℃ 까지는 CHA-PCFC-Cs 형태를 유지하고 있으나, 900∼1,000℃ 사이에서 구조가 파괴되어 무정형으로 상변환 된 후 1,100℃에서 pollucite로 재결정 되었다. 한편 4A-Sr 제올라이트 계의 경우 700℃ 까지는 4A-Sr의 구조를 유지하고 있 으며, 800℃에서 무정형으로 상변환 된 다음 900℃에서는 Sr-feldspar (SrAl2Si2O8, hexagonal)으로, 1,100℃에서 SrAl2Si2O8 (triclinic)로 재결정 되었다. 그러나 BaA-Sr 제올라이트 계의 경우는 500℃ 이하부터 구조가 파괴되기 시작하여 500∼900℃ 에서 무정형 단계를 거친 후, 1,100℃에서 Ba/Sr-feldspar (Ba0.9Sr0.1Al2Si2O8 및 Ba0.5Sr0.5Al2Si2O8 공존)로 재결정 되었다. 상기 제올라이트 계 모두 온도 증가에 따라 탈수/(분해)→ 무정형→ 재결정의 단계를 거쳐 광물상으로 재결정 되었으며, 고온 열 분해 과정에서의 Cs 및 Sr의 휘발성, 침출성 등의 추가 연구가 요구되지만 각 제올라이트 계에 흡착된 Cs 및 Sr은 pollucite나 Sr-feldspar, Ba/Sr-feldspar 등으로 광물화 하여 Cs과 Sr을 배소체/(고화체) 내에 완전히 고정화 시킬 수 있을 것으로 보인다.
        4,000원
        11.
        2015.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The possibility of using the chemical precipitation method of up-cycled ammonium paratungstate (APT) was studied and compared with the thermal decomposition method. WO3 particles were synthesized by chemical precipitation method using a 1: 2 weight ratio of APT: Di-water. For thermal decomposition, APT powder was heated for 4h at 600 oC in air atmosphere. The reaction products were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), particle size analyzer (PSA), and field emission-scanning electron microscopy (FE-SEM). Thermogravimetric analysis (TGA) of the upcycled APT allowed for the identification of the sequence of decomposition and reduction reactions that occurred during the heat treatment. TGA data indicated a total weight loss of 10.78% with the reactions completed in 658 oC. The XRD results showed that APT completely decomposed to WO3 by thermal decomposition and chemical precipitation. The particle size of the synthesized WO3 powders by thermal decomposition with 2 h of planetary milling was around 2 μm. During the chemical precipitation process, the particle size of the synthesized WO3 powders showed a round-shape with ~0.6 μm size.
        4,000원
        12.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        폐 PVC전선의 열적분해 특성에 관한 연구를 TGA 및 고정층 반응기를 이용하여 연구하였다. 본 연구에서는 분해온도, 공기유량 및 CaO/ PVC의 비를 실험조건으로 고려하였으며, PVC전선의 열적분해과정에서 발생되는 염화수소 및 독성가스의 제거를 위한 CaO의 첨가에 대한 효과를 검증하기 위하여 PVC 전선의 열적분해 과정에서 생성되는 기상 생성물을 GC/MS를 이용하여 분석하였다. 또한 CaO의 첨가효과를 고찰하고자 액성 생성물에 대한 GC/MS을 함께 수행하였으며, 분해온도, 공기유량 및 CaO/PVC의 비에 따른 액상, 기상 및 고상 잔류물의 수율 변화를 함께 고찰하였다. 본 연구로부터 CaO의 첨가량이 증가할수록 PVC의 열적분해 과정에서 발생되는 염화수소의 제거량이 증가함을 확인하였다.
        4,000원
        13.
        2012.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Activated magnetite (Fe3O4-δ) was applied to reducing CO2 gas emissions to avoid greenhouse effects. Wet and dry methods were developed as a CO2 removal process. One of the typical dry methods is CO2 decomposition using activated magnetite (Fe3O4-δ). Generally, Fe3O4-δ is manufactured by reduction of Fe3O4 by H2 gas. This process has an explosion risk. Therefore, a non-explosive process to make Fe3O4-δ was studied using FeC2O4·2H2O and N2. FeSO4·7H2O and (NH4)2C2O4·H2O were used as starting materials. So, α-FeC2O4·2H2O was synthesized by precipitation method. During the calcination process, FeC2O4·2H2O was decomposed to Fe3O4, CO, and CO2. The specific surface area of the activated magnetite varied with the calcination temperature from 15.43 m2/g to 9.32 m2/g. The densities of FeC2O4·2H2O and Fe3O4 were 2.28 g/cm3 and 5.2 g/cm3, respectively. Also, the Fe3O4 was reduced to Fe3O4-δ by CO. From the TGA results in air of the specimen that was calcined at 450˚C for three hours in N2 atmosphere, the δ-value of Fe3O4-δ was estimated. The δ-value of Fe3O4-δ was 0.3170 when the sample was heat treated at 400˚C for 3 hours and 0.6583 when the sample was heat treated at 450˚C for 3 hours. Fe3O4-δ was oxidized to Fe3O4 when Fe3O4-δ was reacted with CO2 because CO2 is decomposed to C and O2.
        4,000원
        14.
        2009.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.
        4,000원
        15.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated heat stability of epoxy resin products and epoxy resin according to the influence hardener. The heat flow which shows the degree of thermal decomposition of the epoxy resin product and epoxy resin measured by using the differential scanning calorimeter (DSC). As a result, we found that in the case of heat stability for epoxy resin as hardener was added, the ratio of one to one (epoxy resin : hardener) was the most suitable in air condition and nitrogen atmosphere.
        4,000원
        16.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The accidents occurred by unstable material which is easily exploded or burnt up were caused by heat and collision under the condition of relatively low temperature without oxygen, have been reported frequently. However, the amount of the unstable material is getting higher by development of fine ceramic research area even though its dangerous characteristic is disregarded. This research studied a heat stability and measured boiling point of various carpet material. Carpet has been used in home as well as general indoor usage. Now a day, carpet material which is hardly burnt has been on commercial, but its detailed unstable conditions is not mentioned. This research reports the measurement of the initial temperature of generation heat and heat-radiation change on differential scanning calorimeter (DSC). The DSC data of nylon bulked continuous filament (N-BCF) yam 100%, nylon (NY), poly propylene (PP), and a new material named polytrimethylene terephthalate (PTT) are studied and researched about the effect of them using TGA, furnace, and direct-burning experiment.
        4,000원
        17.
        2005.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        우라늄 변환시설의 라군 슬러지에 함유된 질산염의 안정적 처리를 위해 물 첨가 용해를 실시한 뒤, 여과 케이크의 안정화 특성에 대하여 알아보았다. 물 용해에 의해 대부분의 질산염은 고농도 질산염 용액으로 제거되었으므로, 여과 케이크의 열분해는 에서 하나의 단계로 수행하였다. Muffle furnace를 이용하여 에서 5시간동안 여과 케이크의 열분해를 실시한 결과 라군 1 슬러지에 포함된 U은 의 열분해와 함께 의 형태로 안정화 되었다. 라군 2 열분해 잔류물의 경우에는 열분해 시 생성된 CaO가 냉각과정에서 수분과 반응하여 로 전환되는 것을 TG/DTA 분석과 XRD 분석을 통해 확인할 수 있었지만, 처분장에서 대기중 노출이나 지하수의 침출 등에는 안정한 화합물로 알려져 있으므로, 특별한 첨가제의 첨가 없이 단순 열분해 후 처분이 가능할 것으로 판단된다.
        4,000원
        18.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermolysis of Cu(NO3)2·3H2O impregnated activated carbon fiber (ACF) was studied by means of XRD analysis to obtain Cu-impregnated ACF. Cu(NO3)2·3H2O was converted into Cu2O around 230℃. The Cu2O was reduced to Cu at 400℃, resulting in ACF-C(Cu). Some Cu particles have a tendency to aggregate through the heat treatment, resulting in the ununiform distribution in ACF. Catalytic decomposition of NO gas has been performed by Cu-impregnated ACF in a column reactor at 400℃. Initial NO concentration was 1300 ppm diluted in helium gas. NO gas was effectively decomposed by 5~10 wt% Cu-impregnated ACF at 400℃. The concentration of NO was maintained less than 200 ppm for 6 hours in this system. The ACF-C(Cu) deoxidized NO to N2 and was reduced to ACF-C(Cu2O) in the initial stage. The ACF-C(Cu2O) also deoxidized NO to N2 and reduced to ACF-C(CuO). This ACF-C(CuO) was converted again into ACF-C(Cu) by heating. There was no consumption of ACF in mass during thermolysis and catalytic decomposition of NO to N2 by copper. The catalytic decomposition was accelerated with increase of the reaction temperature.
        4,000원
        20.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermal decomposition of the copolymer of butyl methacylate(BMA) with styrene(St) was investigated. The copolymer Was obtained at 80 ℃ in a continuous stirred tank reactor(CSTR) using toluene and benzoyl peroxide(BPO), as solvent and initiator, respectively. The reactor volume was 0.3 liters and residence time was 3 hours. The thermal decomposition followed the second order kinetics for BMA/St copolymer. The activation energies of thermal decompositon were in the ranges of 38 ~43 kcal/mol for BMA with St copolymer and a good additivity rule was observed with the composition of copolymer. The thermogravimetric trace curve agreed well with the theoretical calculation.
        4,000원
        1 2 3