논문 상세보기

Differentiation of Dopaminergic and Cholinergic Neurons from Mesenchymal-like Stem Cells Derived from the Adipose Tissue KCI 등재

사람 지방 유래 중간엽 줄기세포의 도파민성 및 콜린성 신경세포분화

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/1409
서비스가 종료되어 열람이 제한될 수 있습니다.
Development & Reproduction (발생과 생식)
한국발생생물학회 (The Korea Society Of Developmental Biology)
초록

손상된 뇌신경조직내에서 신경줄기세포로부터 새로운 신경세포로의 분화가 상당히 제한되어 있어 이것이 손상된 뇌신경조직의 복구가 잘 이루어지지 않는 원인이라 여겨지고 있다. 본 연구에서는 세포배양을 통해 지방조직 중간엽 줄기세포를 도파민성 신경세포와 콜린성 신경세포로 분화를 유도하였다. 중간엽 줄기세포를 신경세포로 분화시키기 위해 N2배양액에 bFGF, EGF, dimethyl sulphoxide (DMSO)와 butylated hydroxyanisole (

Neural tissue has limited intrinsic capacity of repair after injury, and the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesechymal-like stem cells from human adipose tissues (AT-MSCs), and studied on transdifferentiation-promoting conditions in neural cells. Dopaminergic and cholinergic neuron induction of AT-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulphoxide (DMSO) and butylated hydroxyanisole(BHA) in N2 Medium and N2 supplement. The immunoreactive cells for -tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. AT-MSCs treated with bFGF, SHH and FGF8 were differentiatied into dopaminergic neurons that were immunopositive for TH antibody. Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor (bFGF), retinoic acid (RA) and sonic hedgehog (Shh). AT-MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including neuro D1, -tubulin III, GFAP and nestinwas markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after preinduction medium culture, we confirmed the differentiation of dopaminergic and cholinergic neurons by TH/-tubulin III or ChAT/ -tubulin III positive cells. Conclusively, AT-MSCs can be differentiated into dopaminergic and cholinergic neuronsand these findings suggest that AT-MSCs are alternative cell source of treatment for neurodegenerative diseases.

저자
  • 홍인경
  • 정나희
  • 김주란
  • 도병록
  • 김해권
  • 강성구