Angelman syndrome (AS) is a neurodevelopmental disorder characterized by intellectual disability and autism. The genetic cause is the absence of UBE3A, an E3 ubiquitin ligase, from the maternal chromosome which can arise from multiple origins. Recently discovered targets of Ube3a are important for activity dependent changes in synaptic transmission and spine morphology. Plasticity studies in an AS mouse model is important for basic plasticity research with regard to understanding protein homeostasis as well as the search for therapeutic targets for the patients. The progress on synaptic plasticity from this unique disorder is reviewed.