논문 상세보기

Effects of Resveratrol on Porcine Oocytes In Vitro Maturation and Subsequent Embryonic Development after Parthenogenetic Activation and In Vitro Fertilization

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/191552
모든 회원에게 무료로 제공됩니다.
발생공학 국제심포지엄 및 학술대회 (International Symposium on Developmental Biotechnology)
한국동물번식학회 (The Korean Society of Animal Reproduction)
초록

The present study investigated the effects of resveratrol (a phytoalexin with various pharmacological activities) during in vitro maturation (IVM) of porcine oocytes on nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels, gene expressions in matured oocytes, cumulus cells, and IVF-derived blastocysts, and subsequent embryonic development after parthenogenetic activation (PA) and in vitro fertilization (IVF). In the nuclear maturation after 44 h IVM, the groups of 0.1, 0.5, and 2.0 μM (83.0%, 84.1%, and 88.3%, respectively) had no significant difference compared to the control (84.1%), but the group of 10.0 μM decreased the nuclear maturation (75.0%) significantly (p<0.05). The groups of 0.5 and 2.0 μM showed a significant (p<0.05) increase in intracellular GSH levels compared to the control and 10.0 μM groups. Intracellular ROS level of oocytes matured with 2.0 μM resveratrol was significantly (p<0.05) decreased compared to the other groups. Oocytes treated with 2.0 μM resveratrol during IVM had significantly higher blastocyst formation rate, and total cell numbers after PA (62.1% and 49.1 vs. 48.8%, and 41.4, respectively) and IVF (20.5% and 54.0 vs. 11.0% and 43.4, respectively) compared to the control group. Cumulus-oocytes complex (COCs) treated with 2.0 μM resveratrol were showed lower (p<0.05) expressions of apoptosis-related genes in both matured oocytes (Bax, Bak, and Caspase-3) and cumulus cells (Bax). In IVF-derived blastocysts derived from 2.0 μM resveratrol treated oocytes had also decreased (p<0.05) expression of Bak compared to the control. In conclusion, the 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF in porcine embryos by increasing the intracellular GSH level, decreasing ROS level, and regulating apoptosis-related genes expression during oocyte maturation.

저자
  • Seong-Sung Kwak(Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University)
  • Seung-A Jeong(Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University)
  • Yu-Byeol Jeon(Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University)
  • Sang-Hwan Hyun(Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University)